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Many array languages such as APL [6], J [10], Futhark [4], or SaC [9] cater for multi-
dimensional arrays as first class citizens. These languages have two main advantages. Firstly,
they give rise to concise specifications of numerical algorithms that use array combinators rather
than explicit indexing as often found in imperative languages such as Fortran or C. Secondly,
as arrays have a very regular structure, many computations on arrays can be automatically
parallelised, which leads to efficient executions on a range of parallel platforms [2, 3, 8, 5].

Rank polymorphism is the ability of functions to be applied to arrays of arbitrary ranks.
Rank polymorphism is important for two reasons. Firstly, it gives rise to more general array
combinators such as map, fold, take, transpose, etc. Secondly, the structure of the nesting can
be used to enforce non-trivial traversals through sub-arrays which is often the basis for advanced
parallel algorithms such as scan or blocked matrix multiply.

In this talk we present how rank-polymorphic arrays can be embedded within a dependently-
typed language. On the one hand, our embedding offers the generality of the specifications found
in array languages. On the other hand, we guarantee safe indexing and offer a way to reason
about concurrency patterns within the given algorithm.

We present the key ingredients of the array framework in Agda. We start with the definition
of an array theory.

record Array : Set1 where
field

S : Set
P : S → Set
ι : N → S
⊗ : S → S → S
ι-↔ : ∀ {n} → P (ι n) ↔ Fin n
⊗-↔ : ∀ {s p} → P (s ⊗ p) ↔ (P s × P p)
Ar : S → Set → Set
Ar-↔ : ∀ {s X} → (P s → X) ↔ Ar s X

Array shapes S are binary trees with natural numbers as leaves. Array indices P are indexed
by shapes, representing trees of natural numbers of the same shape as the index, but where all
leaves are component-wise smaller than the shape components. For example, for some shape
(ι a ⊗ (ι b ⊗ ι c)) the index is of the form (i, (j, k)) where i < a, j < b and k < c. Array
theory does not insist on a particular implementation of S and P but it requires the chosen
implementation to be isomorphic to such trees (ι-↔ and ⊗-↔). Finally, arrays (Ar) are indexed
by the shape and the element type, and we ask that arrays are representable functors (Ar-↔).

By expanding isomorphisms in the array theory, we get a number of useful array combinators
as model constructions. For some (A : Array), we have:
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imap : ∀ {s} → (P s → X) → Ar s X
[ ] : ∀ {s} → Ar s X → (P s → X)

nest : ∀ {s p} → Ar (s ⊗ p) X → Ar s (Ar p X)
unnest : ∀ {s p} → Ar s (Ar p X) → Ar (s ⊗ p) X

By noticing that for a fixed shape s Ar is an applicative functor [7], we obtain operations
like:

map : ∀ {s} → (X → Y) → Ar s X → Ar s Y
zipWith : ∀ {s} → (X → Y → Z) → Ar s X → Ar s Y → Ar s Z

Next, we define an inductive reshape relation that gives rise to reversible permutations of
array elements. There can be various reshaping relations allowing more or less liberal permu-
tations.

data Reshape : S → S → Set

The Reshape relation gives rise to actions on array indices and arrays themselves:

〈 〉 : ∀ {s p} → P p → Reshape s p → P s
reshape : ∀ {a b X} → Reshape a b → Ar a X → Ar b X

We finish this abstract by presenting the simplest example that demonstrates the power
of the proposed framework — a blocked matrix-vector multiplication. We work in the initial
model of our array theory, and we assume that we have two functions ( � : X → Y → Z) and
(sum : ∀ {s} → Ar s Z → Z). Then, a straight-forward matrix-vector multiplication is given by
mat-vec-canon. We define the blocked version mat-vec by running induction on s. When s is a
singleton we use the canonical multiplication defined earlier, but when s is a product (s ⊗ p),
we block the matrix into s matrices of p rows and apply mat-vec recursively on each block. All
these recursive applications can be executed in parallel, as there are no dependencies between
the parts.

mat-vec-canon : Ar (s ⊗ ι n) X → Ar (ι n) Y → Ar s Z
mat-vec-canon a v = imap λ i → sum $ imap λ k → a [ i ⊗ k ] � v [ k ]

mat-vec : Ar (s ⊗ ι n) X → Ar (ι n) Y → Ar s Z
mat-vec {s = ι m} a v = mat-vec-canon a v
mat-vec {s = s ⊗ p} a v = unnest $ map (flip mat-vec v) (nest $ tile a)

We can demonstrate that our blocked algorithm computes the same results (using point-wise
equality ≈a ); and that the blocked algorithm is stable under reshapes. That is, for all possible
reshapes, computing blocked mat-vec on a reshaped array is the same as computing mat-vec
on the original array and then performing the reshape.

mat-vec-ok : (a : Ar (s ⊗ ι n) X) → (v : Ar (ι n) Y) → mat-vec a v ≈a mat-vec-canon a v
mat-vec-stable : (r : Reshape s p) → (a : Ar (s ⊗ ι n) X) → (v : Ar (ι n) Y)

→ mat-vec (reshape (r ⊕ eq) a) v ≈a reshape r (mat-vec a v)

In practice this means, that we can use array reshaping as a vehicle to control which sub-arrays
will be executed in parallel. In the talk we will make this idea precise, explaining how exactly
one can reason about parallel execution.

We conclude with the observation that the presented array theory is very similar to categories
with families [1] which are often used to define type theories. In this analogy, contexts are
shapes, substitutions are reshapes, and well-scoped terms are arrays.
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