
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1

Operational Semantics of λω

ANONYMOUS AUTHOR(S)

CCS Concepts: • Theory of computation→ Operational semantics;

Additional Key Words and Phrases: ordinals, arrays, semantics, functional languages

ACM Reference format:
Anonymous Author(s). 2017. Operational Semantics of λω . Proc. ACM Program. Lang. 1, 1, Article 1 (January 2017), 13 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

In this document we present syntax and formal semantics for the λω — a functional language with native support

for arrays indexed by ordinal numbers. Note that in the paper that uses this semantics, several refinements of the

language are introduced: λα , λ
∞
α , λω without filters and finally λω with filters which is described in this document.

Semantics for the intermediate refinements can be obtained from the semantics of λω by removing the rules for

the syntactic constructs that are not within the syntax of the given refinement.

1 SYNTAX DEFINITIONS AND INFORMAL SEMANTICS
We define the syntax of λω in Fig. 1. λω is an applied λ-calculus with built-in support for ordinals. Its core are the

standard constructs, i.e. constants, variables, abstractions and applications. Constants include booleans, ordinals

and arrays that can be nested for expressing multi-dimensional immutable arrays. Conditionals are supported

the usual way and recursive definitions can be made using letrec-constructs. Primitive operations include the

usual set of scalar operations, including arithmetic operations such as +, -, *, /, etc., and comparisons <, <=, =, etc.
Arithmetic and comparison works on ordinal numbers.

Arrays can be constructed by using potentially nested sequences of scalars in square brackets. For example,

[1, 2, 3, 4] denotes a four-element vector, while [[1, 2], [3, 4]] denotes a two-by-two-element matrix.

The dual of array construction is a built-in operation for element selection, denoted by a dot symbol, used as

an infix binary operator between an array to select from, and a valid index into that array. A valid index is a

vector containing as many elements as the array has dimensions; otherwise it is undefined.

reduce combinator is a variant of foldl, extended to allow for multi-dimensional arrays instead of lists. reduce
takes a binary function, a neutral element and an array of values to be reduced.

The imap-construct starts out with the keyword imap, followed by a description of the result shape, which can

be either a single expression that evaluates to a vector or two expressions separated by a bar that both evaluate

to vectors. The latter is used when expressions evaluated within the imap are non-scalar, where the right hand

side of the bar describes the shape of such an expression. After the shape description a curly bracket precedes the

definition of the mapping function. This function can be defined piecewise by providing a set of index-range

expression pairs. We demand that the set of index ranges constitutes a partitioning of the overall index space

defined through the result shape expression, i.e. their union covers the entire index space and the index ranges are

mutually disjoint. We refer to such index ranges as generators (rule д in Fig. 1), and we call a pair of a generator

and its subsequent expression a partition. Each generator defines an index set and a variable (denoted by x in rule

д in Fig. 1) which serves as the formal parameter of the function to be mapped over the index set. Generators

can be defined in two ways: by means of two expressions which must evaluate to vectors of the same shape,

2017. 2475-1421/2017/1-ART1 $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

1:2 • Anon.

e ::= c (constants)

| x (variables)

| λx .e (abstractions)

| e e (applications)

| e .e (selections)

| if e then e else e (conditionals)

| letrec x = e in e (recursive let binding)

| imap s

д1 : e1,

. . .

дn : en

(index map)

| reduce e e e (reduce)

| filter e e (filter)

| e + e, . . . (scalar binary operations)

| |e | (shape operation)

| islim e (limit ordinal)

s ::= e (scalar imap)

| e |e (generic imap)

д ::= (e <= x < e) (index set)

| _(x) (full index set)

c ::= 0, 1, . . . ,ω,ω + 1, . . . (numbers)

| true, false (booleans)

| [e, . . . , e] (strict immutable arrays)

Fig. 1. The syntax of λω

constituting the lower and upper bounds of the index set, or by using the underscore notation which is syntactic

sugar for the following expansion rule:

(imap s { _ (i v) . . .) ≡ (imap s { [0, ..., 0︸ ︷︷ ︸
n

] <= i v < s : . . .)

assuming that |s | = [n]. The variable name of a generator can be referred to in the expression of the corresponding

partition.

2 A FORMAL SEMANTICS FOR λω
In λω evaluated arrays are described as pairs of shape and element tuples. The shape tuple consists of numbers,

and the element tuple consists of numbers, booleans or functions closures. For denoting pairs and tuples, as well

as element selection and concatenation on them we use the following notations:

®a = ⟨a1, . . . ,an⟩ =⇒ ®ai = ai ⟨a1, . . . ,an⟩ ++ ⟨b1, . . . ,bm⟩ = ⟨a1, . . . ,an ,b1, . . . ,bm⟩

To denote the product of a tuple of numbers we use the following notation:

®s = ⟨s1, . . . , sn⟩ =⇒ ⊗®s = sn · · · · s1 · 1

Note that we multiply elements in the reverse order, which is important as ordinal multiplication is not commut-

ative. Also, when the tuple is empty its product is one. Arrays are rectangular, and the shape vector determines

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

Semantics of λω • 1:3

the extent of every axis. The number of elements of each array is finite. Element vectors contain all the ele-

ments in a linearised form. While the reader can assume row-major order, formally, it suffices that a fixed

linearisation function F®s exists which, given a shape vector ®s = ⟨s1, . . . , sn⟩, is a bijection between indices

{⟨0, . . . , 0⟩ , . . . , ⟨s1 − 1, . . . , sn − 1⟩} and offsets of the element vector: {1, . . . , ⊗®s}. Consider as an example the

array [[1, 2], [3, 4]], with F being row-major order. This array is evaluated into the shape-tuple element-tuple pair

⟨⟨2, 2⟩ , ⟨1, 2, 3, 4⟩⟩. Scalar constants are arrays with empty shapes. We have 5 evaluates to ⟨⟨⟩ , ⟨5⟩⟩. The same

holds for booleans and function closures: true evaluates to ⟨⟨⟩ , ⟨true⟩⟩ and λx .e evaluates to ⟨⟨⟩ , ⟨Jλx .e, ρK⟩⟩.
F is an invariant to the presented semantics. In finite cases the usual choices of F are row-major order or

column-major order. In infinite cases this might be not the best option, and one could consider space-filling

curves instead. Note though that selections assume row-major order on arrays: [[1, 2], [3, 4]].[1, 0] = 3, but the

offset into linearised vector, F ⟨2,2⟩(⟨1, 0⟩), can be anything from {1, . . . , 4}. The inverse of F is denoted as F−1

®s
and for every legal offset {1, . . . , ⊗®s} it returns an index vector for that offset.

Formal definitions. To define the operational semantics of λω , we use a natural semantics similar to the one

described in [Kahn 1987]. To make sharing more visible, instead of a single environment ρ that maps names to

values, we introduce a concept of storage; environments map names to pointers and storage maps pointers to

values. Environments are denoted by ρ and are ordered lists of name-pointer pairs. Storage is denoted by S and

consists of an ordered list of pointer-value pairs.

Formally, we construct storage and environments using the following notation:

S ::= ∅ | S,p 7→ v ρ ::= ∅ | ρ,x 7→ p

A look-up of a storage or an environment is happening right to left and is denoted as S(p) and ρ(x), respectively.
Extensions are denoted with comma:

S ′ = S,p 7→ v ρ ′ = ρ,x 7→ p

When extending a storage, we implicitly assume that the name of the pointer is always fresh. When extending

environments, we preserve the name coming from λ abstraction or letrec, but otherwise when we use a variable

to temporarily assign a pointer, the variable name is assumed to be fresh.

Semantic judgements take the form:

S ; ρ ⊢ e ⇓ S ′; p

where S and ρ are initial storage and environment and e is a λω expression to be evaluated. The result of this

evaluation ends up in the storage S ′ and the pointer p points to it. To simplify notation, sometimes we will use

judgements of the following form:

S ; ρ ⊢ e ⇓ S ′; p ⇒ v to denote S ; ρ ⊢ e ⇓ S ′; p ∧ S ′(p) = v

Values. The values in this semantics are constants and closures that may contain λ term, imap or filter :

⟨⟨. . . ⟩ , ⟨. . . ⟩⟩ ⟨⟨⟩ , ⟨Jλx .e, ρK⟩⟩

u

w
vimap pout |pin

д̄1 : e1,

. . .

д̄n : en

, ρ

}

�
~

u

w
vfilter pf pe

α1 v1

r v
1

i

. . .

αn vnr vni

}

�
~

The abstraction closure contains the λ term and the environment where this term shall be evaluated. The imap
closure contains pointers to frame and element shapes (pout and pin correspondingly), the list of partitions, where
generators have been evaluated and the environment in which the imap shall be evaluated. The filter closure

contains the pointer to the filtering function pf , the shape of the argument we are filtering over (pe) and the list of
partitions that consist of a limit ordinal, and a pair of partial result and natural number:vr andvi correspondingly.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

1:4 • Anon.

Auxiliary terms. To reduce the number of conditions in the rules we use the idea of pretty-big-step operational

semantics [Charguéraud 2013] and introduce auxiliary terms:

Gen(x , ®l , ®u) — the term that captures evaluated generator, where x is the name of the generator variable and
®l

and ®u are generator lower and upper bounds correspondingly.

reduce1 pr i pf pa — partial reduction, where pr is a partial result, i is the current index and pf and pa are

reduction function and the array we are reducing correspondingly.

imap
1
po |pi {®ı

1 7→ p®ı 1 , . . . ,®ı n 7→ p®ı n } — the term to represent a strict imap where every frame index has

been evaluated. The first two arguments, po and pi are pointers to frame and cell shapes. The last argument

is a set which defines index-pointer bindings, for every index within the frame shape.

Meta-operators. Further in this section we use the following meta-operators:

E (v) Lift the internal representation of a vector or a number into a valid λω expression. For example: E (5) = 5,

E (⟨1, 2, 3⟩) = [1, 2, 3], etc.
⟨®s, _⟩ We use underscore to omit the part of a data structure, when binding names. For example: S ; p ⇒ ⟨®s, _⟩

refers to binding the variable ®s to the shape of S(p) which must be a constant.

2.1 Core Rules
The core rules of λω are similar to most of the strict functional languages:

Var

x ∈ ρ ρ(x) ∈ S

S ; ρ ⊢ x ⇓ S ; ρ(x)

Abs

S ; ρ ⊢ λx .e ⇓ S,p 7→ ⟨⟨⟩ , ⟨Jλx .e, ρK⟩⟩ ; p

App

S ; ρ ⊢ e1 ⇓ S1; p1 ⇒ ⟨⟨⟩ , Jλx .e, ρ1K⟩ S1; ρ ⊢ e2 ⇓ S2; p2 S2; ρ1,x 7→ p2 ⊢ e ⇓ S3; p3

S ; ρ ⊢ e1 e2 ⇓ S3; p3

Prf

S ; ρ ⊢ e1 ⇓ S1; p1 ⇒ v1

S1; ρ ⊢ e2 ⇓ S2; p2 ⇒ v2

v1 sem(+)v2 = v

S ; ρ ⊢ e1 + e2 ⇓ S2,p 7→ v ; p

If-True

S ; ρ ⊢ e1 ⇓ S1; p1 ⇒ ⟨⟨⟩ , ⟨true⟩⟩
S1; ρ ⊢ e2 ⇓ S2; p2

S ; ρ ⊢ if e1 then e2 else e3 ⇓ S2; p2

If-False

S ; ρ ⊢ e1 ⇓ S1; p1 ⇒ ⟨⟨⟩ , ⟨false⟩⟩
S1; ρ ⊢ e3 ⇓ S2; p2

S ; ρ ⊢ if e1 then e2 else e3 ⇓ S2; p2

Primitive functions assume availability of opaque functions sem(⊕), where ⊕ ranges over primitive operations,

that give meaning to the operation. When evaluating conditionals, true and false, as any scalars in λω , are
represented as arrays.

The computation of constants deals with scalars and multidimensional immutable arrays.

Const-Scal

c is scalar

S ; ρ ⊢ c ⇓ S1,p 7→ ⟨⟨⟩ , ⟨c⟩⟩ ; p

Imm-Array-empty

S ; ρ ⊢ [] ⇓ S,p 7→ ⟨⟨0⟩ , ⟨⟩⟩ ; p

Imm-Array

n ≥ 1

n∀
i=1

Si ; ρ ⊢ ci ⇓ Si+1; pi P = ⟨p1, . . . ,pn⟩ AllFiniteShape(Sn+1, P) AllSameShape(Sn+1, P)

S ′ = Sn+1,po 7→ ⟨⟨1⟩ , ⟨n⟩⟩ ,pi 7→ Sn+1(p1) S ′, ρ ⊢ imap
1
po |pi {⟨i−1⟩ 7→ pi | i ∈ {1, . . . ,n}} ⇓ S ′′; p

S1; ρ ⊢ [c1, . . . , cn] ⇓ S ′′; p

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

Semantics of λω • 1:5

Scalar constants are directly put into the storage. For arrays we evaluate all the components and ensure that

they are all of the same finite shape. Subsequently, we assemble evaluated components into an imap
1
for final

extraction of scalar values and putting them into the data tuple.

2.1.1 IMap. Generators of imaps never appear as values in the given semantics. Nevertheless, it is convenient

to have a notation for evaluated generators. For that purpose we introduce Gen(x , ®l , ®u) which is a triplet that

keeps a variable name, lower bound and upper bound of a generator together. The rule for the generator is

defined as follows:

Gen

S ; ρ ⊢ e1 ⇓ S1; p1 ⇒

〈
⟨n⟩ , ®l

〉
S1; ρ ⊢ e2 ⇓ S2; p2 ⇒ ⟨⟨n⟩ , ®u⟩

S ; ρ ⊢ (e1 ≤ x < e2) ⇓ S,p 7→ Gen(x , ®l , ®u); p

We present strict and lazy versions of the imap semantics. The strict one forces evaluation of all the scalar

elements and produces the constant array

〈
®s, ®d

〉
. The lazy version, evaluates shapes, generators and puts the

overall imap into a closure. Evaluation of the enclosed generator expressions ek is triggered by selections into

the imap.

IMap-Strict

S ; ρ ⊢ eout ⇓ S1; pout ⇒ ⟨⟨do⟩ , ®sout⟩ S1; ρ ⊢ ein ⇓ S2; pin ⇒ ⟨⟨di ⟩ , ®sin⟩ ⊗(®sout ++ ®sin) < ω

Ŝ1 = S2

n∀
i=1

Ŝi ; ρ ⊢ дi ⇓ Ŝi+1; pдi ⇒ д̄i FormsPartition(®sout, {д̄1, . . . , д̄n})

S̄1 = Ŝn+1 ∀(i,®ı) ∈ Enumerate(®sout)∃k :

������ ®ı ∈ д̄k ∧ д̄k = Gen(xk , _, _)
S̄i ,p 7→ ⟨⟨do⟩ ,®ı ⟩ ; ρ,xk 7→ p ⊢ ek ⇓ S̄ ′i ; p®ı
S̄ ′i ; ρ,x 7→ p®ı ⊢ |x | ⇓ S̄i+1; p ′

®ı ⇒ ⟨⟨di ⟩ , ®sin⟩
S̄⊗ ®sout+1

, ρ ⊢ imap
1
pout |pin {®ı 7→ p®ı | (_,®ı) ∈ Enumerate(®sout)} ⇓ S ′; p

S ; ρ ⊢ imap eout |ein

д1 : e1,

. . .

дn : en

⇓ S ′; p

Strict evaluation of an imap happens in three steps. First, we compute shapes and generators, making sure that

generators form a partition of ®sout (FormsPartition is responsible for this) Secondly, for every valid index defined

by the frame shape, we find a generator that includes the given index (denoted ®ı ∈ д̄k). We evaluate the generator

expression ek , binding the generator variable xk to the corresponding index value and check that the result has

the same shape as pin. Finally, we combine evaluated expressions for every index of the frame shape into imap
1

for further extraction of scalar values.

IMap-Lazy

S ; ρ ⊢ eout ⇓ S1; pout ⇒ ⟨⟨_⟩ , ®sout⟩ S1; ρ ⊢ ein ⇓ S2; pin ⇒ ⟨⟨_⟩ , _⟩

Ŝ1 = S2

n∀
i=1

Ŝi ; ρ ⊢ дi ⇓ Ŝi+1; pдi ⇒ д̄i FormsPartition(®sout, {д̄1, . . . , д̄n},)

S ; ρ ⊢ imap eout |ein

д1 : e1,

. . .

дn : en

⇓ Ŝn+1,p 7→

u

w
vimap pout |pin

д̄1 : e1,

. . .

д̄n : en

; ρ

}

�
~ ; p

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

1:6 • Anon.

When evaluating an imap lazily, we also evaluate shapes and generators, check that generators partition the

frame shape pout and create the closure where generators, generator expressions, the frame and cell shapes that

we have evaluated are stored.

Finally we define the evaluation of the auxiliary term imap
1
.

IMap1

S(pout) = ⟨⟨n⟩ , ®sout⟩ S(pin) = ⟨⟨m⟩ , ®sin⟩ ®s = ®sout ++ ®sin

∀(i,®ı) ∈ Enumerate(®s) :

���� (®ıout,®ıin) = Split(n,®ı)
Si ; ρ,x 7→ p®ıout ⊢ x .E (®ıin) ⇓ Si+1;p ′i ⇒ ai

A = ⟨®s, ⟨a1, . . . ,a⊗®s ⟩⟩

S ; ρ ⊢ imap
1
pout |pin

{
iv1 7→ piv1

, . . . , ivn 7→ pivn

}
⇓ S ′,p 7→ A; p

We compute the shape of the entire imap as ⟨⟨n+m⟩ , ®sout ++ ®sin⟩. For every index tuple within this shape the

first n elements will correspond to the frame index, and the rest to the cell index. Within the third argument of

the imap
1
we find a pointer that corresponds to the frame index. We evaluate selection at the cell index into this

pointer to obtain a scalar value. Finally all these scalars are combined into the array A.

2.1.2 Filter. Filters operate on 1-dimensional arrays. Filters behave differently depending on the shape of

the argument array. In case it is finite, filters are strict; otherwise they are lazy. In contrast to imap the choice

between strict and lazy semantics is fixed. In the strict case we evaluate the argument array and the predicate

function. Then we apply this function to every element of the array, obtaining a mask for the entire array. Using

this mask, we combine the elements of the array we are filtering into a constant array. The rule describing this

process follows.

Filter-Strict

S ; ρ ⊢ f ⇓ S1; pf S1; ρ ⊢ a ⇓ S2; pa ⇒ A S2,xa 7→ pa ; ρ ⊢ |xa | ⇓ S3; ps ⇒ ⟨⟨_⟩ , ®s ⟩
⊗®s < ω S3; ρ,xf 7→ pf ,xa 7→ pa ⊢

(
imap E (®s) |[]

{
[0] <= iv < E (®s) : xf (a.iv)

)
⇓ S4;pm ⇒ M

c = CountTrue(M)
c∀
i=1

: k ≡ F ⟨c ⟩(⟨i⟩) ∧ a′k = FindTrue
i (A,M) A′ =

〈
⟨c⟩ ,

〈
a′

1
, . . . ,a′c

〉〉
S ; ρ ⊢ filter f a ⇓ S4,p 7→ A′

; p

The imap that computes the pm mask is strict. We use two helper functions operating on constant arrays:

CountTrue(a) which counts the number of values ⟨⟨⟩ , ⟨true⟩⟩ in the array a; and FindTrue
i (a,m) which finds

the index of the i-th value ⟨⟨⟩ , ⟨true⟩⟩ in the mask arraym and selects the array a on the given index.

Filters applied to infinite arrays result in closures. Computations within such closures are triggered during

selections.

Filter

S ; ρ ⊢ f ⇓ S1; pf S1ρ ⊢ a ⇓ S2; pa

S2,xa 7→ pa ; ρ ⊢ |xa | ⇓ S3; ps ⇒ ⟨⟨_⟩ , ®s ⟩ ⊗®s ≥ ω S ′ = S3,pres 7→
r
filter pf pa

{
0 ⟨⟨0⟩ , ⟨⟩⟩ 0

z

S ; ρ ⊢ filter f a ⇓ S ′; pres

The closure of a filter contains a pointer to the evaluated array, the pointer to the evaluated predicate function

and the first partition for the index 0. This partition has an empty vector as partial result and 0 as maximal index.

Partial results will be updated on selections. New partitions may be added on selections on indices α+n where α
is a limit ordinal and n ∈ N, if the partition for α does not exist.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

Semantics of λω • 1:7

2.1.3 Reduction. Reductions are strict, left-associative and happen in the canonical order determined by F :

Reduce

S ; ρ ⊢ eneut ⇓ S1; pneut ⇒ vneut
S1; ρ ⊢ a ⇓ S2; pa S2; ρ ⊢ f ⇓ S3; pf S3,pr 7→ vneut; ρ ⊢ reduce1 pr 1 pf pa ⇓ S4; p

S ; ρ ⊢ reduce f eneut a ⇓ S4; p

Reduce1-1

S,a 7→ pa ; ρ ⊢ |a | ⇓ S1; p ⇒ ⟨⟨_⟩ , ®s⟩ n > ⊗®s

S ; ρ ⊢ reduce1 pr n pf pa ⇓ S1; pr

Reduce1-2

S,a 7→ pa ; ρ ⊢ |a | ⇓ S1; p ⇒ ⟨⟨_⟩ , ®s⟩ n ≤ ⊗®s
®ı = F−1

®s (n) S1; ρ, f 7→ pf , r 7→ pr ,a 7→ pa ⊢ f r (a.E (®ı)) ⇓ S2; p ′r S2; ρ ⊢ reduce1 p
′
r (n+1) pf pa ⇓ S3; p

S ; ρ ⊢ reduce1 pr n pf pa ⇓ S3; p

2.1.4 Selections. Selections are the only constructs in our language that force updates of the lazy data structures.
Selections can happen into strict arrays and imap/filter closures. The rule for strict selections follow.

Sel-strict

S ; ρ ⊢ i ⇓ S1; pi ⇒ ⟨⟨d⟩ ,®ı⟩ S1; ρ ⊢ a ⇓ S2; pa ⇒ ⟨®s, ®a⟩ k = F®s (®ı)

S ; ρ ⊢ a.i ⇓ S3,p 7→ ⟨⟨⟩ , ⟨®ak ⟩⟩ ; p

We evaluate the array we are selecting from and the index vector we are selecting at. Then we compute the offset

into the data vector by applying F to the index vector. Finally, we get the scalar value at the corresponding index.

Note that when applying F we implicitly check that:

• the index is within bounds 1 ≤ k ≤ ⊗®s , as F®s is undefined outside the index space bounded by ®s; and
• the index vector and the shape vector are of the same length, which means that selections evaluate scalars

and not array sub-regions.

Sel-lazy-imap

S ; ρ ⊢ i ⇓ S1; pi ⇒ ⟨⟨_⟩ , ®v ⟩ S1; ρ ⊢ a ⇓ S2; pa ⇒

u

w
vimap pout |pin

д̄1 e1

. . .

д̄n en

, ρ ′

}

�
~

S2(pout) = ⟨⟨m⟩ , _⟩ (®ı, ®ȷ) = Split(m, ®v) ∃k : ®ı ∈ д̄k д̄k = Gen(xk , _, _)
S2,p 7→ E (®ı) ; ρ ′,xk 7→ p ⊢ ek ⇓ S3; p®ı S3; ρ ′,x 7→ p®ı ⊢ x .E (®ȷ) ⇓ S4; p S5 = UpdateIMap(S4,pa ,®ı,p®ı)

S ; ρ ⊢ a.i ⇓ S5; p

Selections into lazy imaps happen at indices that are of the same length as concatenation of the imap frame and

cell shapes. This means that the index the imap is selected at has to be split into frame and shape sub-indices: ®ı
and ®ȷ correspondingly. Given that д̄k contains ®ı, we evaluate ek with xk being bound to ®ı. As this value may be

non-scalar, we evaluate selection into it at ®ȷ. Finally, the evaluated generator expression is saved within the imap
closure. This step is performed by the helper function UpdateIMap.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

1:8 • Anon.

Let us denote the enclosed filter we are selecting from as follows:

A =

u

w
vfilter pf pe

α1 r1 i1

. . .

αn rn in

}

�
~

Let us also assume that ξ is a limit ordinal and n is a natural number. In this case selection into lazy filters can be

described using the following rules.

Sel-Lazy-Filter-1

S ; ρ ⊢ a ⇓ S1; pa ⇒ A S1; ρ ⊢ idx ⇓ S2; pidx ⇒ ⟨⟨1⟩ , ⟨ξ + n⟩⟩ S2; ρ,x 7→ pa ⊢ |x | ⇓ S3; ps
⟨⟨1⟩ , ⟨l⟩⟩ = S3(pe) ξ < l ξ ∈ S3(pa) rξ = ⟨⟨m⟩ , ⟨c1, . . . , cm⟩⟩ n < m

S ; ρ ⊢ a.idx ⇓ S3,p 7→ ⟨⟨⟩ , ⟨cn+1⟩⟩ ; p

Sel-Lazy-Filter-2

S ; ρ ⊢ a ⇓ S1; pa ⇒ A S1; ρ ⊢ idx ⇓ S2; pidx ⇒ ⟨⟨1⟩ , ⟨ξ + n⟩⟩ S2; ρ,x 7→ pa ⊢ |x | ⇓ S3; ps
⟨⟨1⟩ , ⟨l⟩⟩ = S3(pe) ξ < l ξ < S3(pa) S4 = AddPartition(S3,pa , ξ) S4; ρ,x 7→ pa ⊢ x idx ⊢ S5; p

S ; ρ ⊢ a.idx ⇓ S5; p

Sel-Lazy-Filter-3

S ; ρ ⊢ a ⇓ S1; pa ⇒ A S1; ρ ⊢ idx ⇓ S2; pidx ⇒ ⟨⟨1⟩ , ⟨ξ + n⟩⟩
S2; ρ,x 7→ pa ⊢ |x | ⇓ S3; ps ⟨⟨1⟩ , ⟨l⟩⟩ = S3(pe) ξ < l ξ ∈ S3(pa) rξ = ⟨⟨m⟩ , ⟨c1, . . . , cm⟩⟩

n ≥ m S3; ρ,xe 7→ pe ⊢ xe .E
(〈
iξ
〉)

⇓ S4; pel S4; ρ,xf 7→ pf ,xel 7→ pel ⊢ xf xel ⇓ S5; pb

⟨⟨⟩ ,v⟩ = S5(pel) r ′ξ =

{
⟨⟨m + 1⟩ , ⟨c1, . . . , cm ,v⟩⟩ S5(pb) = ⟨⟨⟩ , ⟨true⟩⟩

rξ otherwise

S6 = UpdatePartition(S5,pa , ξ , r
′
ξ , iξ + 1) S6; ρ,xa 7→ pa ,xidx 7→ pidx ⊢ xa xidx ⇓ S7; p

S ; ρ ⊢ a.idx ⇓ S7; p

Selections into filter closures fall into three cases. First, if the ξ partition exists in the filter closure, notation

ξ ∈ S3(pa), then we check whether the partial result of this partition contains the index n. If so, we return the

scalar value stored in the partial result at the offset n + 1. Secondly, if the enclosed filter does not have a partition

for the limit ordinal ξ , we add this partition to the filter closure using AddPartition, which updates pa by adding

the ξ 7→ (⟨⟨0⟩ , ⟨⟩⟩ , ξ) partition to the enclosed filter. Finally, if the ξ partition exists, but its partial result rξ has

less than n elements, we evaluate selection into the enclosed array at

〈
iξ
〉
, binding the evaluated result to pel. In

case the predicate function applied to pel evaluates to true, we compute r ′ξ by concatenating rξ and pel. Otherwise

the partial result stays the same: r ′ξ = rξ . The ξ partition of the pa is updated with the value (r ′ξ , iξ + 1) using the

UpdatePartition helper function. After that we evaluate selection into the updated filter closure once again.

Letrec. Recursive definitions are possible using the letrec construct which has the following semantics:

Letrec

S1 = S,p 7→ ⊥ ρ1 = ρ,x 7→ p S1; ρ1 ⊢ e1 ⇓ S2; p2 S3 = S2[p2/p] S3; ρ,x 7→ p2 ⊢ e2 ⇓ S4; pr

S ; ρ ⊢ letrec x = e1 in e2 ⇓ S4; pr

where S[p2/p] denotes substitution of the x 7→ p bindings inside of the enclosed environments with x 7→ p2,

where x is any legal variable name.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

Semantics of λω • 1:9

2.1.5 Shape. In order to maintain rank and shape polymorphism it suffices to define how to compute the

shape of a value at runtime. Further we define how to compute shapes of constants, λ-closures, imaps and filters.

Shape-Const

S ; ρ ⊢ x ⇓ S1; px ⇒ ⟨⟨s1, . . . , sn⟩ , _⟩

S ; ρ ⊢ |x | ⇓ S1,p 7→ ⟨⟨n⟩ , ⟨s1, . . . , sn⟩⟩ ; p

Shape-Abs

S ; ρ ⊢ x ⇓ S1; p ⇒ ⟨⟨⟩ , Jλx ′.e, ρ ′K⟩

S ; ρ ⊢ |x | ⇓ S1,p 7→ ⟨⟨0⟩ , ⟨⟩⟩ ; p

Shape-IMap

S ; ρ ⊢ x ⇓ S1; px ⇒ Jimap pout |pin _, ρ ′K
⟨⟨n⟩ , ®s⟩ = S1(pout) ⟨⟨m⟩ , ®u⟩ = S1(pin) A = ⟨⟨m + n⟩ , ®s ++ ®u⟩

S ; ρ ⊢ |x | ⇓ S1,p 7→ A; p

Shapes of constants can be straightforwardly extracted from the constant value; shapes of λ functions are empty;

the shape of an imap is a concatenation of its frame and cell shapes.

Shapes of infinite filters depend on the length of the argument array: if the length is a limit ordinal ξ then the

shape of the result is also ξ .

Shape-Filter-1

S ; ρ ⊢ x ⇓ S1; px ⇒
q
filter pf pe _

y
S1; ρ, e 7→ pe ⊢ |e | ⇓ S2; ps ⇒ ⟨⟨1⟩ , ⟨ξ ⟩⟩

S ; ρ ⊢ |x | ⇓ S1,p 7→ ⟨⟨1⟩ , ⟨ξ ⟩⟩ ; p

Otherwise, if the shape of the argument array is ξ + n, where n ∈ N, we force filtering of the elements at

indices from ⟨ξ ⟩ to ⟨ξ + n − 1⟩. Finally, the shape of the filter is ξ plus the number of elements in the rξ .

Shape-Filter-2

S ; ρ ⊢ x ⇓ S1; px ⇒
q
filter pf pe _

y
S1; ρ, e 7→ pe ⊢ |e | ⇓ S2; ps ⇒ ⟨⟨1⟩ , ⟨ξ + n⟩⟩

S̄0 = S2

n−1∀
i=0

: S̄i ; ρ, e 7→ pe , f 7→ pf ⊢ f (e .E (⟨ξ + i⟩)) ⇓ S̄i+1; pi c =
n−1∑
i=0

(
S̄n(pi) = ⟨⟨⟩ , true⟩

)
S ; ρ ⊢ |x | ⇓ S̄n ,p 7→ ⟨⟨1⟩ , ⟨ξ + c⟩⟩ ; p

2.1.6 Limit ordinal. The builtin islim operation ensures that the argument is a scalar and checks whether it is

a limit ordinal or not:

LimitOrdinal

S ; ρ ⊢ e ⇓ S1; pe ⇒ ⟨⟨⟩ , ⟨ξ ⟩⟩ c =

{
⟨⟨⟩ , ⟨true⟩⟩ ξ is a limit ordinal

⟨⟨⟩ , ⟨false⟩⟩ otherwise

S ; ρ ⊢ islim e ⇓ S1,p 7→ c; p

As Cantor Normal Form (CNF) is used to represent ordinals, the check whether a value is a limit ordinal is

straightforward. First, we check that ξ ≥ ω. Secondly, that the coefficient at ω0
is zero in the CNF of ξ .

3 AUXILIARY FUNCTIONS

3.1 Tuple operations
A function to split a vector into two parts at the position k .

Split(k, ⟨a1, . . . ,an⟩) = (⟨a1, . . . ,ak ⟩ , ⟨ak+1, . . . ,an⟩)

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

1:10 • Anon.

The ◁d operator takes d − 1 elements from the first tuple and all the elements starting from the index d from

the second tuple. Both tuples are of the same length.

⟨a1, . . . ,an⟩ ◁d ⟨b1, . . . ,bn⟩ = ⟨a1, . . . ,ad−1,bd , . . . ,bn⟩

The ⋄d operator updates the d-th element of the first tuple with the d-th element of the second tuple.

⟨a1, . . . ,ad , . . . ,an⟩ ⋄d ®b =
〈
a1, . . . , ®bd , . . . ,an

〉
3.2 Partition operations
Partitions are pairs of tuples of the same length, where each tuple consists of numbers. To simplify the usage of

partition-related auxiliary functions we will let those functions to operate on the evaluated generators, but we

will ignore the variable.

First, we can find out whether two partitions intersect.

Gen(_, ®l , ®u) ∩ Gen(_, ®l ′, ®u ′) =

Gen(_, ®l↑, ®u↓)

®l↑ < ®u↓

∧Gen(_, ®l↑, ®u↓) ∈ Gen(_, ®l , ®u)
∧Gen(_, ®l↑, ®u↓) ∈ Gen(_, ®l ′, ®u ′)

∅ otherwise

where
®l↑ is component-wise maximum of

®l and ®l ′ and ®u↓ is component-wise minimum of ®u and ®u ′
. Two partitions

intersect if (®l↑, ®u↓) is not empty and belongs to both partitions.

If a partition p1 lies within p2, we can define a split of p2 over p1 into 2d + 1 sub-partitions, where d is the

dimensionality of partitions. The overall idea can be understood from 1-d case. Assume that the lower and

upper bounds of p2 are (⟨0⟩ , ⟨10⟩) and (⟨2⟩ , ⟨4⟩) for p2. As it can be seen p1 can be split in three parts: (⟨0⟩ , ⟨2⟩),
p1 = (⟨2⟩ , ⟨4⟩) and (⟨4⟩ , ⟨10⟩). In the multi-dimensional case, the same idea can be applied for every dimension.

Let us define the split of the partition p ′ over p across the dimension d . Assume that p = Gen(_, ®l , ®u) and
p ′ = Gen(_, ®l ′, ®u ′):

splitdl (
®l ′, ®u ′, ®l , ®u,d) = Gen(_, ®l ◁d ®l ′, (®u ◁d+1 ®u ′) ⋄d ®l)

and

splitdr (
®l ′, ®u ′, ®l , ®u,d) = Gen(_, (®l ◁d+1

®l ′) ⋄d ®u, ®u ◁d ®u ′)

If we do such a split for every dimension, and we include partition intersection we will get a partition split:

PartSplit(p ′,p) =
n⋃
i=1

({
splitdl (

®l ′, ®u ′, ®l , ®u,d), splitdr (
®l ′, ®u ′, ®l , ®u,d)

})
∪ {p ∩ p ′}

Finally, the function we use when evaluating imaps that checks whether the list of generators partition the

index-space defined by the shape of the imap.

FormsPartition (®s, {p1, . . . ,pn}) = ∀i , j : pi ∩ pj = ∅ ∧

n⋃
i=1

pi = Gen(_, ®0, ®s)

The fact that the union of partitions forms the index space defined by the shape vector ®s can be checked using

the following inductive definition:

∀i ∈ {1, . . . ,n} : Ri+1 =
⋃
r j ∈Ri

PartSplit(r j ,pi) \
(
r j ∩ pi

)
Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

Semantics of λω • 1:11

as follows:

n⋃
i=1

pi = Gen(_, ®0, ®s) ⇐⇒ R1 =
{
Gen(_, ®0, ®s)

}
∧ Rn+1 = ∅

3.3 Enumerate
The Enumerate function generates an enumeration of the index space defined by ®s using F and returns a set of

pairs, where the first element of each pair is an offset and the second element is an index vector.

Enumerate(®s) =
{(
i, F−1

®s (i)
)
| i ∈ i {1, . . . , ⊗®s}

}
3.4 UpdateIMap
The UpdateIMap function splits the д̄k partition into a single-element partition containing ®ı and the rest. Then

the function removes д̄k from the imap closure and adds new partitions obtained by the split. Expressions bound

to every non-®ı partition remain the same as at д̄k , i.e. ek . The expression for the ®ı partition is a fresh variable x ,
while the enclosed environment extended with the x 7→ p®ı binding.

A =

u

w
vimap pout |pin

. . .

д̄k ek

. . .

, ρ ′

}

�
~

S = S1,pa 7→ A, S2 ®ı ∈ д̄k P = Gen(xk , ®ı, ®ı+®1) R = PartSplit(д̄k , P) \ д̄k ∩ P

R′ = {Gen(xk , ®l , ®u) | Gen(_, ®l , ®u) ∈ R} A′ =

u

wwwwwwww
v

imap pout |pin

. . .

P x

R′
1

ek

. . .

R′
|R′ |

ek

. . .

, ρ ′,x 7→ p®ı

}

��������
~

UpdateIMap(S,pa ,®ı,p®ı) = S1,pa 7→ A′, S2

3.5 Filter-related operations
A function that counts the number of elements with value ⟨⟨⟩ , ⟨true⟩⟩ in the array.

CountTrue(⟨_, ⟨a1, . . . ,an⟩⟩) =
n∑
i=1

{
1 ai = ⟨⟨⟩ , ⟨true⟩⟩

0 otherwise

A function that finds the index of then-th value ⟨⟨⟩ , ⟨true⟩⟩ in the 1-dimensional arrayM and selects 1-dimensional

array A at this index.

FindTrue
n(A,M) = FindTrueHelper(1, 0,n,A,M)

where

FindTrueHelper(i,m,n, ⟨_, ®a⟩ , ⟨_, ®m⟩) =

®ai m = n − 1 ∧ ®mi = ⟨⟨⟩ , ⟨true⟩⟩

FindTrueHelper(i + 1,m,n,A,M) m , n − 1 ∧ ®mi = ⟨⟨⟩ , ⟨f alse⟩⟩

FindTrueHelper(i + 1,m + 1,n,A,M) m , n − 1 ∧ ®mi = ⟨⟨⟩ , ⟨true⟩⟩

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

1:12 • Anon.

The AddPartition function updates a filter closure by adding the ξ 7→ (⟨⟨0⟩ , ⟨⟩⟩ , ξ) partition.

A =

u

w
vfilter pf pe

α1 r1 i1

. . .

αn rn in

}

�
~ S = S1,pa 7→ A, S2 A′ =

u

www
v
filter pf pe

α1 r1 i1

. . .

αn rn in

ξ ⟨⟨0⟩ , ⟨⟩⟩ ξ

}

���
~

AddPartition(S,pa , ξ) = S1,pa 7→ A′, S2

The UpdatePartition function replaces partial result and index of a given partition in the filter closure with

new values.

A =

u

w
vfilter pf pe

. . .

ξ rξ iξ

. . .

}

�
~ S = S1,pa 7→ A, S2 A′ =

u

w
vfilter pf pe

. . .

ξ r ′ξ i
′
ξ

. . .

}

�
~

UpdatePartition(S,pa , ξ , r
′
ξ , i

′
ξ) = S1,pa 7→ A′, S2

4 OBSERVATIONS
Here are a few important observations regarding the semantics of λω . First of all, if a program terminates, then

its result has a strict shape:

Theorem 4.1.

∀P ∈ λω : ∅; ∅ ⊢ P ⇓ S ; p =⇒ S ;x 7→ p ⊢ |x | ⇓ S ′; p ′ ∧ S ′(p ′) = ⟨⟨n⟩ , ⟨v1, . . . ,vn⟩⟩ ,n ∈ N

This is because constants and functions have shape by definition and imap evaluates shapes strictly. An attempt

to define shapeless objects like:

l e t r e c x = f i t e r (λy . t r u e) x

will fail as such a program diverges.

Secondly, any number that ever appears as a result in λω is less than ωω
.

Theorem 4.2.

∀P ∈ λω : ∅; ∅ ⊢ P ⇓ S ; p =⇒ ωω >

{
v S(p) = ⟨⟨⟩ , ⟨d⟩⟩∏

®v S ;x 7→ p ⊢ |x | ⇓ S ′; p ′ ∧ S ′(p ′) = ⟨_, ®v⟩

This is because shapes and function applications are evaluated strictly. Therefore, an attempt to construct the

shape larger than ωω
via the following series of imaps:

v ≡ imap [ω] { _ (i v) : ω
vv ≡ imap v { _ (i v) : ω

fails, as strict computation of v that is required in the shapes of imaps diverges. An attempt to create the power

function directly:

l e t r e c f = λ r . λ i . i f i < ω then f r ∗ω i +1 e l se r in f 1 0

or via reduce:

reduce ∗ 1 v

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

Semantics of λω • 1:13

diverges as well because of strict evaluation. This means that in its current state all the ordinals are representable

using simplified Cantor Normal form, where ω powers ai are natural numbers:

α = ωa1 · x1 + · · · + ω
an · xn + p

Such a restriction means that infinite arrays always have finite number of dimensions. In principle, this can be

relaxed by introducing a builtin ordinal power operation, in which case we will be able to define numbers up to

ϵ0. However, at this point it is not clear whether there is a good use of such an extension. Also, this would make

shapes non-strict rendering comparison of two shapes undecidable in general case.

Recursive definitions as we intuitively write them will not work as expected for transfinite numbers. Consider

the following attempt to define identity function for numbers that recursively descends to 0, adding 1 at every

step:

l e t r e c f = λx . i f x = 0 then 0 e l se 1 + (f (x −1)) in f α

For the cases when α ≥ ω the function will diverge, as x − 1 will evaluate to x . Replacing left subtraction used

by default with the right one wouldn’t help, as x −R 1 does not exist for the cases when x is a limit ordinal. An

attempt to reformulate this function into recursively ascending:

l e t r e c f = λx . λn . i f n = x then n e l se 1 + (f x (n + 1)) in f α 0

does not help either. When α ≥ ω the function diverges, as there is no way to reach ω by successive application

of the add 1 function. The reason for this is that normal recursion does not cover transfinite cases. To express the

above computations we need to use transfinite recursion, which apart from the usual base case also defines cases

for every limit ordinal. Therefore, the availability of the predicate that tells whether the number is a limit ordinal,

such as islim in case of λω , is absolutely crucial.

REFERENCES
Arthur Charguéraud. 2013. Pretty-Big-Step Semantics. In Programming Languages and Systems (Lecture Notes in Computer Science), Matthias

Felleisen and Philippa Gardner (Eds.), Vol. 7792. Springer Berlin Heidelberg, 41–60.

G. Kahn. 1987. Natural semantics. In STACS 87, FranzJ. Brandenburg, Guy Vidal-Naquet, and Martin Wirsing (Eds.). Lecture Notes in

Computer Science, Vol. 247. Springer Berlin Heidelberg, 22–39. https://doi.org/10.1007/BFb0039592

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.1007/BFb0039592

	Abstract
	1 Syntax Definitions and Informal Semantics
	2 A Formal Semantics for
	2.1 Core Rules

	3 Auxiliary Functions
	3.1 Tuple operations
	3.2 Partition operations
	3.3 Enumerate
	3.4 UpdateIMap
	3.5 Filter-related operations

	4 Observations
	References

