
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

A Lambda Calculus for Transfinite Arrays
Unifying Arrays and Streams

ARTJOMS ŠINKAROVS, Heriot-Watt University

SVEN-BODO SCHOLZ, Heriot-Watt University

We propose a design for a functional language that natively supports infinite arrays. We use ordinal numbers

to introduce the notion of infinity in shapes and indices. By doing so, we obtain a calculus that naturally

extends existing array calculi and, at the same time, allows for recursive specifications as they are found

in stream- and list-based settings. Furthermore, the main language construct that can be thought of as an

𝑛-fold cons operator gives rise to expressing transfinite recursion in data, something that lists or streams

usually do not support. This makes it possible to treat the proposed calculus as a unifying theory of arrays,

lists and streams. We give an operational semantics of the proposed language, discuss design choices that we

have made, and demonstrate its expressibility with several examples. We also demonstrate that the proposed

formalism preserves a number of well-known universal equalities from array/list/stream theories, and discuss

implementation-related challenges.

CCS Concepts: • Theory of computation → Operational semantics;

Additional Key Words and Phrases: ordinals, arrays, semantics, functional languages

ACM Reference format:
Artjoms Šinkarovs and Sven-Bodo Scholz. 2017. A Lambda Calculus for Transfinite Arrays. Proc. ACM Program.
Lang. 1, 1, Article 1 (January 2017), 30 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Conceptually, lists and streams are different objects. Lists are finite inductive objects that can be

characterised as the smallest fixpoint: Lst 𝐴 = `𝑋 .1 +𝐴 × 𝑋 , and streams are infinite co-inductive

objects that are characterised as the greatest fixpoint: Str 𝐴 = a𝑋 .𝐴 × 𝑋 .

Despite these conceptual differences between lists and streams, it has been proven useful to

enable programmers to specify functions that can operate on both forms equally well. In particular

languages that allow for the construction of cyclic structures can support a list type [𝐴] as the
greatest fix point a𝑋 .1+𝐴×𝑋 without requiring extra implementation effort. With this construction,

any function that operates on lists inherently is applicable to streams as well.

A similar unification of streams and arrays is less straight-forward. The main obstacle to such

a unification lies in the fact that array computations usually make heavy use of random access

selections, while stream computations are expressed in a step-wise fashion on a temporarily

available window of elements. This difference has led to two distinct programming styles: stream

processing [Hinze 2010; Stephens 1997; Thies et al. 2002] and array programming [Grelck and

Scholz 2006; IBM 1994; Svensson and Svenningsson 2014]. If we want to apply some array-based

program to a stream, it typically requires the given program to be massively rewritten.

The key towards a unification of arrays and streams, at least on a conceptual level, becomes

evident when looking at arrays as index-value mappings. We can model arrays of element type 𝐴

as a family of types:

[𝐴]𝑛 = Fin(𝑛) → 𝐴 𝑛 : Nat

2017. 2475-1421/2017/1-ART1 $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Artjoms Šinkarovs and Sven-Bodo Scholz

where Fin(𝑛) denotes the set {0, . . . 𝑛−1}.
With this in mind, we can observe the following correspondence for streams:

Str 𝐴 ≃ 𝐴𝜔 ≃ Nat → 𝐴 ≃ [𝐴]𝜔
Streams are isomorphic to infinite sequences, and 𝐴𝜔

is an exponential object that can be seen as

a mapping of positions in that sequence to its values. Such an object is nothing but an array of

infinite length. Consequently, a unification of arrays and streams can be achieved by extension of

our type family for arrays to:

[𝐴]𝛼 = Fin(𝛼) → 𝐴 𝛼 : Nat + 1

where the right injection of the sum type contains 𝜔 and the definition of Fin is extended by

Fin(𝜔) = Nat. While this conceptually unites arrays and streams in the same way as the type [𝐴]
unites lists and streams, we identify two main challenges that we address in this paper.

The first challenge arises from the fact that algebraic properties on finite structures often are

lost when switching to the infinite setting. As an example consider some classical list properties:

value-related properties such as map 𝑓 ◦map 𝑔 = map (𝑓 ◦ 𝑔) hold for lists and streams alike but

properties that relate to the structure of lists such as drop (len 𝑎) (𝑎 ++ 𝑏) = 𝑏 typically only hold

for (finite) lists; for streams, they break. While this loss of properties might be deemed acceptable

in the context of list programming, in the context of array programming such structural properties

play a very important role. Sophisticated array calculi have evolved around such properties such

as Mullin’s𝜓 -calculus [Mullin and Thibault 1994; Mullin 1988], Nial [Glasgow and Jenkins 1988]

and the many APL-inspired array languages [Bernecky and Berry 1993; Breed et al. 1972; Hui and

Iverson 1998]. Losing the generality of such properties for the sake of including streams would

constitute an unacceptable loss. We tackle this issue by extending our type families for arrays

further. We introduce the notion of Transfinite Arrays as we expand our type indices to countable

ordinals:

[𝐴]𝛼 = Fin(𝛼) → 𝐴 𝛼 : Ord

With this extension, we can resurrect most algebraic array properties for the infinite case.

The second challenge arises from the observation that transfinite arrays imply the existence

of transfinite streaming, a concept that rarely considered in stream processing. We discuss what

implications this extension has on classical streaming problems such as filtering and we propose

solutions on how to deal with it.

The individual contributions of this paper are as follows:

(1) We define an applied _-calculus on finite arrays, its operational semantics and a type system

for array operations. The calculus is a generic core language that implicitly supports several

array calculi as well as compilation to highly efficient parallel code.

(2) We expand the _-calculus to support infinite arrays and show that the use of ordinals as

indices enables a wide range of array-algebraic laws to carry over from the finite case to the

infinite case.

(3) We show that the proposed calculus also maintains many streaming properties even in the

context of transfinite streaming.

(4) We show that the proposed calculus inherently supports transfinite recursion. Several ex-

amples are contrasted to traditional list-based solutions.

(5) We provide and describe a prototypical implementation
1
. It demonstrates the viability of our

semantics and it shows how the strict and finite fragment of the language can be mapped

1
The implementation is provided in the anonymous supplementary materials.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Transfinite Arrays 1:3

into high-performance code. We also provide a brief discussion on the opportunities and

challenges involved when compiling the full language capabilities into efficient code.

We start with a description of the finite array calculus and naive extensions for infinite arrays in

Section 2, before presenting the ordinal-based approach and its potential in Sections 3–5. Section 6

presents our prototypical implementation. Related work is discussed in Section 7; we conclude in

Section 8.

2 EXTENDING ARRAYS TO INFINITY
We define an idealised, data-parallel array language, based on an applied _-calculus that we call _𝛼 .

The key aspect of _𝛼 is built-in support for shape- and rank-polymorphic array operations, similar

to what is available in APL [Iverson 1962], J [Jsoftware 2016], or SaC [Grelck and Scholz 2006].

In the array programming community, it is well-known [Falster and Jenkins 1999; Jenkins and

Mullin 1991] that basic design choices made in a language have an impact on the array algebras to

which the language adheres. While we believe that our proposed approach is applicable within

various array algebras, we chose one concrete setting for the context of this paper. We follow

the design decisions of the functional array language SaC, which are compatible with many array

languages, and which were taken directly from K.E. Iverson’s design of APL.

DD 1 All expressions in _𝛼 are arrays. Each array has a shape which defines how components

within arrays can be selected.

DD 2 Scalar expressions, such as constants or functions, are 0-dimensional objects with empty
shape. Note that this maintains the property that all arrays consist of as many elements as the

product of their shape, since the product of an empty shape is defined through the neutral

element of multiplication, i.e. the number 1.

DD 3 Arrays are rectangular — the index space of every array forms a hyper-rectangle. This allows
the shape of an array to be defined by a single vector containing the element count for each

axis of the given array.

DD 4 Nested arrays that cater for inhomogeneous nesting are not supported. Homogeneously
nested array expressions are considered isomorphic with non-nested higher-dimensional arrays.
Inhomogeneous nesting, in principle, can be supported by adding dual constructs for enclosing

and disclosing an entire array into a singleton, and vice versa. DD 2 implies that functions

and function application can be used for this purpose.

DD 5 _𝛼 supports infinitely many distinct empty arrays that differ only in their shapes. In the

definition of array calculi, the choice whether there is only one empty array or several has

consequences on the universal equalities that hold. While a single empty array benefits

value-focussed equalities, structural equalities require knowledge of array shapes, even when

those arrays are empty. In this work, we assume an infinite number of empty arrays; any

array with at least one shape element being 0 is empty. Empty arrays with different shape

are considered distinct. For example, the empty arrays of shape [3, 0] and [0] are different
arrays.

Further we describe the syntax and informal semantics of the language in Section 2.1 and we

present types for the main array constructs in Section 2.2. Readers who feel more comfortable

when explanation of the language starts with types can immediately refer to Section 2.2.

2.1 Syntax Definition and Informal Semantics of _𝛼
We define the syntax of _𝛼 in Fig. 1. Its core is an untyped, applied _-calculus. Besides scalar con-

stants, variables, abstractions and applications, we introduce conditionals, a recursive let operator

and some basic functions on the constants, including arithmetic operations such as +, -, *, /, a

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Artjoms Šinkarovs and Sven-Bodo Scholz

𝑐 ::= 0, 1, . . . , (numbers)

| true, false (booleans)

𝑒 ::= 𝑐 (constants)

| 𝑥 (variables)

| _𝑥 .𝑒 (abstractions)

| 𝑒 𝑒 (applications)

| if 𝑒 then 𝑒 else 𝑒 (conditionals)

| letrec 𝑥 = 𝑒 in 𝑒 (recursive let)

| 𝑒 + 𝑒, . . . (built-in binary)

| [𝑒, . . . , 𝑒] (array constructor)

| 𝑒.𝑒 (selections)

| |𝑒 | (shape operation)

∼

∼
| reduce 𝑒 𝑒 𝑒 (reduction)

| imap 𝑠

𝑔1 : 𝑒1,

. . .

𝑔𝑛 : 𝑒𝑛

(index map)

𝑠 ::= 𝑒 (scalar imap)

| 𝑒 |𝑒 (generic imap)

𝑔 ::= (𝑒 <= 𝑥 < 𝑒) (index set)

| _(𝑥) (full index set)

Fig. 1. The syntax of _𝛼

remainder operation denoted as %, and comparisons <, <=, =, etc. The actual support for arrays as
envisioned by the aforementioned design principles is provided through five further constructs:

array construction, selection, shape operation, reduce and imap combinators.

All arrays in _𝛼 are immutable. Arrays can be constructed by using potentially nested sequences of

scalars in square brackets. For example, [1, 2, 3, 4] denotes a four-element vector, while [[1, 2], [3, 4]]
denotes a two-by-two-element matrix. We require any such nesting to be homogeneous, for

adherence to DD 4. For example, the term [[1, 2], [3]] is irreducible, so does not constitute a value.

The dual of array construction is a built-in operation for element selection, denoted by a dot

symbol, used as an infix binary operator between an array to select from, and a valid index into

that array. A valid index is a vector containing as many elements as the array has dimensions;

otherwise it is undefined.

[1, 2, 3, 4] .[0] = 1 [[1, 2], [3, 4]] .[1, 1] = 4 [[1, 2], [3, 4]] .[1] = ⊥
The third array-specific addition to _𝛼 is the primitive shape operation, denoted by enclosing

vertical bars. It is applicable to arbitrary expressions, as demanded by DD 1, and it returns the shape

of its argument as a vector, leveraging DD 3. For our running examples, we obtain:

��[1, 2, 3, 4]�� =
[4] and

��[[1, 2], [3, 4]]�� = [2, 2]. DD 5 and DD 2 imply that we have:��[]�� = [0]
��[[]]�� = [1, 0]

��true �� = []
��
42

�� = []
��_𝑥 .𝑥 �� = []

_𝛼 includes a reduce combinator which in essence, it is a variant of foldl, extended to allow for

multi-dimensional arrays instead of lists. reduce takes three arguments: the binary function, the

neutral element and the array to reduce. For example, we have:

reduce (+) 0 [[1, 2], [3, 4]] = ((((0 + 1) + 2) + 3) + 4)
assuming row-major traversal order. This allows for shape-polymorphic reductions such as:

sum ≡ _a . reduce (_x . _y . x+y) 0 a ; a l s o works f o r s c a l a r s and empty a r r a y s

The final, and most elaborate, language construct is the imap (index map) construct. It bears

some similarity to the classical map operation, but instead of mapping a function over the elements

of an array, it constructs an array by mapping a function over all legal indices into the index space

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Transfinite Arrays 1:5

denoted by a given shape expression
2
. Added flexibility is obtained by supporting a piecewise

definition of the function to be mapped. Syntactically, the imap-construct starts out with the

keyword imap, followed by a description of the result shape (rule 𝑠 in Fig. 1). The shape description

is followed by a curly bracket that precedes the definition of the mapping function. This function

can be defined piecewise by providing a set of index-range expression pairs. We demand that the set

of index ranges constitutes a partitioning of the overall index space defined through the result shape

expression, i.e. their union covers the entire index space and the index ranges are mutually disjoint.

We refer to such index ranges as generators (rule 𝑔 in Fig. 1), and we call a pair of a generator and

its subsequent expression a partition. Each generator defines an index set and a variable (denoted

by 𝑥 in rule 𝑔 in Fig. 1) which serves as the formal parameter of the function to be mapped over

the index set. Generators can be defined in two ways: by means of two expressions which must

evaluate to vectors of the same shape, constituting the lower and upper bounds of the index set, or

by using the underscore notation which is syntactic sugar for the following expansion rule:

(imap s { _ (i v) . . .) ≡ (imap s { [0, ..., 0︸︷︷︸
𝑛

] <= i v < s : . . .)

assuming that

��𝑠 �� = [𝑛]. The variable name of a generator can be referred to in the expression of

the corresponding partition.

The <= and < operators in the generators can be seen as element-by-element array counterparts

of the corresponding scalar operators which, jointly, specify sets of constraints on the indices

described by the generators. As the index-bounds are vectors, we have:

𝑣1 <= 𝑣2 =⇒
��𝑣1

��.[0] = ��𝑣2

��.[0] ∧ ∀0 <= 𝑖 <
��𝑣1

��.[0] : 𝑣1.[𝑖] <= 𝑣2.[𝑖]

In the rest of the paper, we use the same element-wise extensions for scalar operators, denoting

the non-scalar versions with dot on top: 𝑐 = 𝑎 ¤+𝑏 =⇒ 𝑐.𝑖 = 𝑎.𝑖 + 𝑏.𝑖 . This often helps to simplify

the notation
3
.

As an example of an imap, consider an element-wise increment of an array 𝑎 of shape [𝑛].
While a classical map-based definition can be expressed as map (_𝑥 .𝑥 + 1) 𝑎, using imap, the same

operation can be defined as:

imap [n] { [0] <= i v < [n] : a . i v + 1

Having mapping functions from indices to values rather than values to values adds to the

flexibility of the construct. Arrays can be constructed from shape expressions without requiring an

array of the same shape available:

imap [3 , 3] { [0 , 0] <= i v < [3 , 3] : i v . [0] ∗ 3 + i v . [1]

defines a 2-dimensional array [[0, 1, 2], [3, 4, 5], [6, 7, 8]]. Structural manipulations can be defined

conveniently as well. Consider a reverse function, defined as follows:

r e v e r s e ≡ _a . imap | a | { [0] <= i v < | a | : a . (| a | ¤− i v ¤− [1])

In order to express this with map, one needs to construct an intermediate array, where indices

of 𝑎 appear as values. Note also that the explicit shape of the imap construct makes it possible to

define shape-polymorphic functions in a way similar to our definition of 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 . An element-wise

increment for arbitrarily shaped arrays can be defined as:

i nc rement ≡ _a . imap | a | { _ (i v) : a . i v + 1 ; a l s o works f o r s c a l a r s & empty a r r a y s

2
For readers familiar with Haskell: the imap defined here derives the index space from a shape expression. It does not

require an argument array of that shape.

3
A formal definition of the extended operator is: (¤⊕) ≡ _𝑎._𝑏.imap |𝑎 | {_(iv) : 𝑎.iv ⊕ 𝑏.iv where ⊕ ∈ {+,−, · · · }.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Artjoms Šinkarovs and Sven-Bodo Scholz

DD 4 allows imap to be used for expressing operations in terms of 𝑛-dimensional sub-structures.

All that is required for this is that the expressions on the right hand side of all partitions evaluate to

non-scalar values. For example, matrices can be constructed from vectors. Consider the following

expression:

imap [n] { [0] <= i v < [n] : [1 , 2 , 3 , 4] ; non − s c a l a r p a r t i t i o n s (i n c o r r e c t a t t emp t)

Its shape is [𝑛, 4]; however, this shape no longer can be computed without knowing the shape of

at least one element. If the overall result array is empty, its shape determination is a non-trivial

problem. To avoid this situation, we require the programmer to specify the result shape by means

of two shape expressions separated by a vertical bar: see the rule (generic imap) in Fig. 1. We refer

to these two shape expressions as the frame shape which specifies the overall index range of the

imap construct as well as the cell shape which defines the shape of all expressions at any given

index. The concatenation of those two shapes is the overall shape of the resulting array. For more

discussions related to the concepts of frame and cell shapes, see [Bernecky 1987, 1993; Bernecky

and Iverson 1980]. The above imap expression therefore needs to be written as:

imap [n] | [4] { [0] <= i v < [n] : [1 , 2 , 3 , 4] ; non − s c a l a r p a r t i t i o n s (c o r r e c t)

to be a legitimate expression of _𝛼 . The (scalar imap) case in Fig. 1, which we use predominantly in

the paper, can be seen as syntactic sugar for the generic version, with the second expression being

an empty vector.

2.2 Towards a Type System for _𝛼
Wewill present an outline of a type system here so that a reader could develop a better understanding

of the essence of the array calculus that _𝛼 provides. For the sake of readability, we have taken

some small liberties, like omitting definitions of standard arithmetic operations as well as standard

non-array constructs.

We use dependent types to specify array operations. First we define the types we will use as well

as well-formedness criteria for array types.

Nat

Nat : Type

Bool

Bool : Type

Fin

𝑛 : Nat

Fin(𝑛) : Type

Fun

𝐴 : Type 𝐵 : Type

𝐴 → 𝐵 : Type

Array

𝑇 : Type 𝑇 ∉ {Array} 𝑑 : Nat 𝑠 : Fin(𝑑) → Nat 𝑣 :

(∏
𝑖 : Fin(𝑑).Fin(𝑠 𝑖)

)
→ 𝑇

Array(𝑇,𝑑, 𝑠, 𝑣) : Type

Nat is a type for natural numbers, Bool is a type for booleans, Fin(𝑛) is a type for numbers from 0

to 𝑛 − 1. Function types are standard. An array type is a quadruple, where the first element is a type

of the base element. We prohibit 𝑇 to be of array types, as according to DD 4, nested arrays are not

supported. The second element of the tuple is the dimensionality of an array. We do not support

nested arrays, but we support multi-dimensional arrays, so instead of having a type [[𝐴]𝑚]𝑛 we

have a type [𝐴] ⟨𝑛,𝑚⟩ . Such a shape vector ⟨𝑛,𝑚⟩ is a third component of the tuple and it is modeled

as a function from positions into vector components, e.g. {0 → 𝑛, 1 →𝑚} in our example. The last

component of the tuple is a function type that maps an index vector type to a value type 𝑇 . For

each dimension 𝑖 : Fin(𝑑) the corresponding index component has to be within the given shape,

i.e. it has to be of type Fin(𝑠 𝑖).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Transfinite Arrays 1:7

The definitions of Nat and Fin are standard:

Nat0

0 : Nat

Nat𝑠

𝑛 : Nat

𝑆 𝑛 : Nat

Fin-0

𝑛 : Nat

0 : Fin(𝑆 𝑛)

Fin-S

𝑛 : Nat 𝑘 : Fin(𝑛)
𝑆 𝑘 : Fin(𝑆 𝑛)

We use 𝑥 notation to denote conversion from Nat to Fin(𝑥 + 1):

𝑥 : Nat =⇒ 𝑥 : Fin(𝑥 + 1)

We use standard context Γ ::= · | Γ, 𝑥 : 𝐴, where 𝐴 : Type. All the numbers in the language are

natural numbers and the shape operation for any array of shape 𝑠 returns a one-dimensional vector

of Nats, with the content 𝑠:

Const

Γ ⊢ 𝑐 : Nat

Shape

Γ ⊢ 𝑎 : Array(𝑇,𝑑, 𝑠, 𝑣)
Γ ⊢ |𝑎 | : Array(Nat, 1, __.𝑑, _𝜙.𝑠 (𝜙 0))

To construct a one-dimensional array using the bracket notation [𝑒0, . . . , 𝑒𝑛−1] we ensure that all
the elements have the same type, the shape vector of such an array is ⟨𝑛⟩ — a single-element vector

containing 𝑛. The value function of such an array is {⟨0⟩ ↦→ 𝑒0, ⟨1⟩ ↦→ 𝑒1, . . . } and we use a meta

operator packvec to construct it.

1d-Arr

∀0 ≤ 𝑖 < 𝑛. Γ ⊢ 𝑒𝑖 : 𝑇 𝑇 ∉ {Array}
Γ ⊢ [𝑒0, . . . , 𝑒𝑛−1] : Array(𝑇, 1, __.𝑛, packvec 𝑒0 . . . 𝑒𝑛−1)

packvec 𝑒0 . . . 𝑒𝑛−1 =

_𝜙 . i f 𝜙 0 = 0 then 𝑒0

e l se i f 𝜙 0 = 1 then 𝑒1

. . .

To construct a (𝑑 + 1)-dimensional array using 𝑛 𝑑-dimensional arrays we expect all the arrays

to have the same dimensionality 𝑑 and the same shape. Therefore we require 𝑑 to be the same

and we require 𝑠 to be the same. By the latter we mean extensional equality. As 𝑠 will be of a type

Fin(𝑑) → Nat, such a check is decidable. Finally, we use the pack meta operator to create a value

function for the resulting array.

nd-Arr

∀0 ≤ 𝑖 < 𝑛. Γ ⊢ 𝑒𝑖 : Array(𝑇,𝑑, 𝑠, 𝑣𝑖)
𝑠𝑎 ≡ _𝑖.if 𝑖 = 0 then 𝑛 else 𝑠 (𝑖 − 1)

Γ ⊢ [𝑒0, . . . , 𝑒𝑛−1] : Array(𝑇,𝑑 + 1, 𝑠𝑎, pack 𝑣0 . . . 𝑣𝑛−1)

pack 𝑣0 . . . 𝑣𝑛−1 =

_𝜙 . i f 𝜙 0 = 0 then
𝑣0 (_ i .𝜙 (i +1))

e l se i f 𝜙 0 = 1 then
𝑣1 (_ i .𝜙 (i +1))

. . .

When selecting an element from a 𝑑-dimensional array, we have to provide an index which shall

be a 1-dimensional array of Nats of 𝑑 elements, where each element is bound by the shape of the

array we are selecting from.

Sel

Γ ⊢ 𝑎 : Array(𝑇,𝑑, 𝑠𝑎, 𝑣𝑎)
Γ ⊢ 𝑖 : Array(Nat, 1, 𝑠𝑖 , 𝑣𝑖) Γ ⊢ 𝑠𝑖 0 = 𝑑 ∀0 ≤ 𝑗 < 𝑑. Γ ⊢ (𝑣𝑖 (__. 𝑗)) < (𝑠𝑎 𝑗)

Γ ⊢ 𝑎.𝑖 : 𝑇

The imap construct can be seen as a generalisation of the [𝑒0, . . .] construct, a higher-order
function that takes the shape of an array and a set of functions that generate elements for a given

range of indices. We demonstrate the typing rule for the scalar imap, and we avoid the construction

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Artjoms Šinkarovs and Sven-Bodo Scholz

of the value function of the resulting array, as such a construction is reflected in our semantics.

imap-scal

Γ ⊢ 𝑠 : Array(Nat, 1, 𝑠𝑠 , 𝑣𝑠)
∀1 ≤ 𝑖 ≤ 𝑛. Γ ⊢ 𝑙𝑖 : Array(Nat, 1, 𝑠𝑠 , _)
∀1 ≤ 𝑖 ≤ 𝑛. Γ ⊢ 𝑢𝑖 : Array(Nat, 1, 𝑠𝑠 , _)

∀1 ≤ 𝑖 ≤ 𝑛. Γ, 𝑖𝑣𝑖 : Array(Nat, 1, 𝑠𝑠 , _) ⊢ 𝑒𝑖 : 𝑇 𝑇 ∉ {Array}

Γ ⊢ imap 𝑠

𝑙1 ≤ 𝑖𝑣1 < 𝑢1 : 𝑒1,

. . .

𝑙𝑛 ≤ 𝑖𝑣𝑛 < 𝑢𝑛 : 𝑒𝑛,

: Array(𝑇, (𝑠𝑠 0), _𝑖 .𝑣𝑠 (__.𝑖), _)

The rest of the typing rules for applications, abstractions, letrec and conditionals are standard,

therefore we omit them here.

The type system presented here imposes a distinction between natural numbers and arrays of

natural numbers of an empty shape. While this helps keeping the presentation reasonably compact

this distinction is undesirable for _𝛼 from a pragmatical perspective. As most array calculi do, we

want to consider scalars to be 0-dimensional arrays with empty shape. Amongst other benefits, this

allows the function _𝑎.imap |𝑎 | {_(𝑖𝑣) : 𝑎.𝑖𝑣 + 1 to be applied to regular arrays and scalars alike.

In the above type system, we can create an array of an empty shape: Array(Nat, 0, efq, _𝜙 .5),
where efq : Fin(0) → Nat (a function from empty type to Nat). The object of such a type will be

isomorphic to 5 : Nat, but not identical. This means that we will have to introduce explicit coercions

not only between numbers of type Fin and Nat, but also between any non-array type 𝑇 and an

empty array of type 𝑇 .

For the price of further type constructions, some of these equalities can be regained as shown

in [Elsman and Dybdal 2014; Slepak et al. 2014; Trojahner and Grelck 2009]. Since this paper is

mainly concerned with the calculus itself and its properties, we omit such elaboration. Instead, we

assume that 𝑇 ≡ Array(𝑇, 0, _, _), for non-array types 𝑇 , and numbers of type Nat and Fin can be

used interchangeably.

2.3 Formal Semantics of _𝛼
In this section, we offer a brief overview of the semantics. A complete semantics can be found

in [Anonymous-1 2018].

In _𝛼 , evaluated arrays are pairs of shape and element tuples. A shape tuple consists of numbers,

and an element tuple consists of numbers, booleans or functions closures. We denote pairs and

tuples, as well as element selection and concatenation on them, using the following notation:

®𝑎 = ⟨𝑎1, . . . , 𝑎𝑛⟩ =⇒ ®𝑎𝑖 = 𝑎𝑖 ⟨𝑎1, . . . , 𝑎𝑛⟩ ++ ⟨𝑏1, . . . , 𝑏𝑚⟩ = ⟨𝑎1, . . . , 𝑎𝑛, 𝑏1, . . . , 𝑏𝑚⟩
To denote the product of a tuple of numbers, we use the following notation:

®𝑠 = ⟨𝑠1, . . . , 𝑠𝑛⟩ =⇒ ⊗®𝑠 = 𝑠𝑛 · · · · 𝑠1 · 1

When a tuple is empty, its product is one. An array is rectangular, so its shape vector specifies

the extent of each axis. The number of elements of each array is finite. Element vectors contain

all the elements in a linearised form. While the reader can assume row-major order, formally, it

suffices that a fixed linearisation function 𝐹®𝑠 exists which, given a shape vector ®𝑠 = ⟨𝑠1, . . . , 𝑠𝑛⟩, is
a bijection between indices {⟨0, . . . , 0⟩, . . . , ⟨𝑠1 − 1, . . . , 𝑠𝑛 − 1⟩} and offsets of the element vector:

{1, . . . , ⊗®𝑠}. Consider, as an example, the array [[1, 2], [3, 4]], with 𝐹 being row-major order. This

array is evaluated into the shape-tuple element-tuple pair ⟨⟨2, 2⟩, ⟨1, 2, 3, 4⟩⟩. Scalar constants are
arrays with empty shapes. We have 5 evaluating to ⟨⟨⟩, ⟨5⟩⟩. The same holds for booleans and

function closures: true evaluates to ⟨⟨⟩, ⟨true⟩⟩ and _𝑥.𝑒 evaluates to ⟨⟨⟩, ⟨J_𝑥.𝑒, 𝜌K⟩⟩.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Transfinite Arrays 1:9

𝐹 is an invariant to the presented semantics. In finite cases, the usual choices of 𝐹 are row-major

order or column-major order. In infinite cases, this might be not the best option, and one could

consider space-filling curves instead. 𝐹 is only relevant for two operations; the creation of array

values and the selection of elements from it. Selections relate the indices of the index vectors to the

axes of the arrays following the order of nesting and starting with the index 0 on each level. We

have: [[1, 2], [3, 4]] [1, 0] = 3, Assuming 𝐹 is row-major, 𝐹 ⟨2,2⟩ (⟨1, 0⟩) equals 2 which, when used

as index into ⟨⟨2, 2⟩, ⟨1, 2, 3, 4⟩⟩ returns the intended result 3.

The inverse of 𝐹 is denoted as 𝐹−1

®𝑠 and for every legal offset {1, . . . , ⊗®𝑠} it returns an index vector

for that offset.

Deduction rules. To define the operational semantics of _𝛼 , we use a natural semantics, similar to

the one described in [Kahn 1987]. To make sharing more visible, instead of a single environment

𝜌 that maps names to values, we introduce a concept of storage; environments map names to

pointers and storage maps pointers to values. Environments are denoted by 𝜌 and are ordered lists

of name-pointer pairs. Storage is denoted by 𝑆 and consists of an ordered list of pointer-value pairs.

Formally, we construct storage and environments as lists of pointer-value and variable-pointer

bindings, respectively, using comma to denote extensions:

𝑆 ::= ∅ | 𝑆, 𝑝 ↦→ 𝑣 𝜌 ::= ∅ | 𝜌, 𝑥 ↦→ 𝑝

A look-up of a storage or an environment is performed right to left and is denoted as 𝑆 (𝑝) and 𝜌 (𝑥),
respectively. Extensions are denoted with comma. Semantic judgements can take two forms:

𝑆 ; 𝜌 ⊢ 𝑒 ⇓ 𝑆 ′; 𝑝 𝑆 ; 𝜌 ⊢ 𝑒 ⇓ 𝑆 ′; 𝑝 ⇒ 𝑣

where 𝑆 and 𝜌 are initial storage and environment and 𝑒 is a _𝛼 expression to be evaluated. The

result of this evaluation ends up in the storage 𝑆 ′ and the pointer 𝑝 points to it. The latter form of a

judgement is a shortcut for: 𝑆 ; 𝜌 ⊢ 𝑒 ⇓ 𝑆 ′; 𝑝 ∧ 𝑆 ′(𝑝) = 𝑣 .

Values. The values in this semantics are constants (including arrays) and _-closures which contain

the _ term and the environment where this term shall be evaluated:

⟨⟨. . . ⟩, ⟨. . . ⟩⟩ ⟨⟨⟩, ⟨J_𝑥.𝑒, 𝜌K⟩⟩

Meta-operators. Further in this section we use the following meta-operators:

E(𝑣) Lift the internal representation of a vector or a number into a valid _𝛼 expression. For

example: E(5) = 5, E(⟨1, 2, 3⟩) = [1, 2, 3], etc.
⟨®𝑠, _⟩ We use underscore to omit the part of a data structure, when binding names. For example:

𝑆 ; 𝑝 ⇒ ⟨®𝑠, _⟩ refers to binding the variable ®𝑠 to the shape of 𝑆 (𝑝) which must be a constant.

2.4 Core Rules
In _𝛼 , the rules for the _-calculus core, i.e. constants, variables, abstractions and applications are

straightforward adaptations of the standard rules for strict functional languages to our notation

with storage and pointers:

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Artjoms Šinkarovs and Sven-Bodo Scholz

Const-Scal

𝑐 is scalar

𝑆 ; 𝜌 ⊢ 𝑐 ⇓ 𝑆1, 𝑝 ↦→ ⟨⟨⟩, ⟨𝑐⟩⟩; 𝑝

Var

𝑥 ∈ 𝜌 𝜌 (𝑥) ∈ 𝑆

𝑆 ; 𝜌 ⊢ 𝑥 ⇓ 𝑆 ; 𝜌 (𝑥)

Abs

𝑆 ; 𝜌 ⊢ _𝑥.𝑒 ⇓ 𝑆, 𝑝 ↦→ ⟨⟨⟩, ⟨J_𝑥 .𝑒, 𝜌K⟩⟩; 𝑝

App

𝑆 ; 𝜌 ⊢ 𝑒1 ⇓ 𝑆1; 𝑝1 ⇒ ⟨⟨⟩, J_𝑥 .𝑒, 𝜌1K⟩
𝑆1; 𝜌 ⊢ 𝑒2 ⇓ 𝑆2; 𝑝2 𝑆2; 𝜌1, 𝑥 ↦→ 𝑝2 ⊢ 𝑒 ⇓ 𝑆3; 𝑝3

𝑆 ; 𝜌 ⊢ 𝑒1 𝑒2 ⇓ 𝑆3; 𝑝3

As an illustration, consider the evaluation of (_𝑥.𝑥) 42:

∅; ∅ (_𝑥 .𝑥) 42 Abs

𝑆1 = 𝑝1 ↦→ ⟨⟨⟩, J_𝑥 .𝑥, ∅K⟩; ∅ 𝑝1 42 Const-Scal

𝑆2 = 𝑆1, 𝑝2 ↦→ ⟨⟨⟩, ⟨42⟩⟩; ∅ 𝑝1 𝑝2 App

𝑆2; 𝑥 ↦→ 𝑝2 𝑥 Var

𝑆2; ∅ 𝑝2 □

We start with an empty storage and an empty environment. The outer application demands

that the App-rule be used. It enforces three computations: the evaluation of the function, the

evaluation of the argument and the evaluation of the function body with an appropriately expanded

environment. The function is evaluated by the Abs-rule which adds a closure 𝑝1 ↦→ ⟨⟨⟩, J_𝑥.𝑥, ∅K⟩
to the storage and returns the pointer 𝑝1 to it. The argument is evaluated by the Const-Scal-

rule which adds 𝑝2 ↦→ ⟨⟨⟩, ⟨42⟩⟩ to the storage and returns 𝑝2. Finally, the App-rule demands the

evaluation of the body of the function with an environment 𝜌1 = 𝑥 ↦→ 𝑝2. The body being just the

variable 𝑥 , the Var-rule gives us 𝑆2; 𝑝2 as final result.

The rules for array constructors and array selections are rather straightforward as well. Both

these constructs are strict:

Imm-Array

𝑛 ≥ 1

𝑛

∀
𝑖=1

𝑆𝑖 ; 𝜌 ⊢ 𝑐𝑖 ⇓ 𝑆𝑖+1; 𝑝𝑖

𝑃 = ⟨𝑝1, . . . , 𝑝𝑛⟩ AllSameShape(𝑆𝑛+1, 𝑃) 𝑆 ′ = 𝑆𝑛+1, 𝑝𝑜 ↦→ ⟨⟨1⟩, ⟨𝑛⟩⟩, 𝑝𝑖 ↦→ 𝑆𝑛+1 (𝑝1)
𝑆 ′, 𝜌 ⊢ imap

1
𝑝𝑜 |𝑝𝑖 {⟨𝑖−1⟩ ↦→ 𝑝𝑖 | 𝑖 ∈ {1, . . . , 𝑛}} ⇓ 𝑆 ′′; 𝑝

𝑆1; 𝜌 ⊢ [𝑐1, . . . , 𝑐𝑛] ⇓ 𝑆 ′′; 𝑝

Imm-Array-empty

𝑆 ; 𝜌 ⊢ [] ⇓ 𝑆, 𝑝 ↦→ ⟨⟨0⟩, ⟨⟩⟩; 𝑝

Sel-strict

𝑆 ; 𝜌 ⊢ 𝑖 ⇓ 𝑆1; 𝑝𝑖 ⇒ ⟨⟨𝑑⟩,®𝚤⟩ 𝑆1; 𝜌 ⊢ 𝑎 ⇓ 𝑆2; 𝑝𝑎 ⇒ ⟨®𝑠, ®𝑎⟩ 𝑘 = 𝐹®𝑠 (®𝚤)
𝑆 ; 𝜌 ⊢ 𝑎.𝑖 ⇓ 𝑆3, 𝑝 ↦→ ⟨⟨⟩, ⟨®𝑎𝑘⟩⟩; 𝑝

Empty arrays are put into the storage with shape [0] (Imm-Array-empty-rule). Non-empty

arrays (Imm-Array-rule) evaluate all the components and ensure that they are all of the same finite

shape. Subsequently, we assemble evaluated components into the resulting array value ensuring

that the flattening adheres to 𝐹 . This is achieved by using an auxiliary term imap
1
. It takes the form

imap
1
𝑝𝑜 |𝑝𝑖 {®𝚤 1 ↦→ 𝑝®𝚤 1 , . . . ,®𝚤 𝑛 ↦→ 𝑝®𝚤𝑛 } where 𝑝𝑜 and 𝑝𝑖 are pointers to frame and cell shapes, and

the set {®𝚤 1 ↦→ 𝑝®𝚤 1 , . . . ,®𝚤 𝑛 ↦→ 𝑝®𝚤𝑛 } contains pairs of frame-shape indices and value pointers for all

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Transfinite Arrays 1:11

IMap-Strict

𝑆 ; 𝜌 ⊢ 𝑒out ⇓ 𝑆1; 𝑝out ⇒ ⟨⟨𝑑𝑜⟩, ®𝑠out⟩ 𝑆1; 𝜌 ⊢ 𝑒in ⇓ 𝑆2; 𝑝in ⇒ ⟨⟨𝑑𝑖⟩, ®𝑠in⟩
𝑆1 = 𝑆2

𝑛

∀
𝑖=1

𝑆𝑖 ; 𝜌 ⊢ 𝑔𝑖 ⇓ 𝑆𝑖+1; 𝑝𝑔𝑖 ⇒ 𝑔𝑖 FormsPartition(®𝑠out, {𝑔1, . . . , 𝑔𝑛})

𝑆1 = 𝑆𝑛+1 ∀(𝑖,®𝚤) ∈ Enumerate(®𝑠out)∃𝑘 :

������ ®𝚤 ∈ 𝑔𝑘 ∧ 𝑔𝑘 = Gen(𝑥𝑘 , _, _)
𝑆𝑖 , 𝑝 ↦→ ⟨⟨𝑑𝑜⟩,®𝚤 ⟩; 𝜌, 𝑥𝑘 ↦→ 𝑝 ⊢ 𝑒𝑘 ⇓ 𝑆 ′𝑖 ; 𝑝®𝚤
𝑆 ′𝑖 ; 𝜌, 𝑥 ↦→ 𝑝®𝚤 ⊢ |𝑥 | ⇓ 𝑆𝑖+1; 𝑝 ′

®𝚤 ⇒ ⟨⟨𝑑𝑖⟩, ®𝑠in⟩
𝑆⊗ ®𝑠out+1

, 𝜌 ⊢ imap
1
𝑝out |𝑝in {®𝚤 ↦→ 𝑝®𝚤 | (_,®𝚤) ∈ Enumerate(®𝑠out)} ⇓ 𝑆 ′; 𝑝

𝑆 ; 𝜌 ⊢ imap 𝑒out |𝑒in

𝑔1 : 𝑒1,

. . .

𝑔𝑛 : 𝑒𝑛

⇓ 𝑆 ′; 𝑝

Gen

𝑆 ; 𝜌 ⊢ 𝑒1 ⇓ 𝑆1; 𝑝1 ⇒ ⟨⟨𝑛⟩, ®𝑙 ⟩ 𝑆1; 𝜌 ⊢ 𝑒2 ⇓ 𝑆2; 𝑝2 ⇒ ⟨⟨𝑛⟩, ®𝑢⟩

𝑆 ; 𝜌 ⊢ (𝑒1 ≤ 𝑥 < 𝑒2) ⇓ 𝑆, 𝑝 ↦→ Gen(𝑥, ®𝑙, ®𝑢); 𝑝

legal indices into the frame shape. The formal definition of the deduction rule for imap
1
is provided

in [Anonymous-1 2018, Sec 2.1.1].

The rule for selection (Sel-strict-rule) first evaluates the array we are selecting from, and the

index vector specifying the array index we wish to select. Then, we compute the offset into the

data vector by applying 𝐹 to the index vector. Finally, we get the scalar value at the corresponding

index. When applying 𝐹 , we implicitly check that:

• the index is within bounds 1 ≤ 𝑘 ≤ ⊗®𝑠 , as 𝐹®𝑠 is undefined outside the index space bounded

by ®𝑠; and
• the index vector and the shape vector are of the same length, which means that selections

evaluate scalars and not array sub-regions.

IMap. In order to keep the imap rule reasonably concise, we introduce two separate rules, a

rule Gen for evaluating the generator bounds, and the main rule for imap, the Imap-Strict-Rule.
The Gen-rule introduces auxiliary values Gen(𝑥, ®𝑙, ®𝑢) which are triplets that keep a variable name,

lower bound and upper bound of a generator together. These auxiliary values are references only

by the rule for imap.
Evaluation of an imap happens in three steps. First, we compute shapes and generators, making

sure that generators form a partition of ®𝑠out (FormsPartition is responsible for this). Secondly, for

every valid index defined by the frame shape (Enumerate generates a set of offset-index-vector

pairs), we find a generator that includes the given index (denoted ®𝚤 ∈ 𝑔𝑘). We evaluate the generator

expression 𝑒𝑘 , binding the generator variable 𝑥𝑘 to the corresponding index value and check that

the result has the same shape as 𝑝in. Finally, we combine evaluated expressions for every index of

the frame shape into imap
1
for further extraction of scalar values.

All missing rules, including built-in operations, conditionals and recursion through the 𝑙𝑒𝑡𝑟𝑒𝑐-

construct are straightforward adaptations of the standard rules. They can be found in [Anonymous-1

2018]. Formal definitions of helper functions, such as AllSameShape, will also be found there.

2.5 Infinite Arrays
In order to support infinite arrays, we introduce the notion of infinity in _𝛼 , and we allow infinities

to appear in shape components. Syntactically, this can be achieved by adding a symbol for infinity,

as shown in Fig. 2. For disambiguation, we refer to the extended version of _𝛼 as _∞𝛼 . Adding∞ has

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Artjoms Šinkarovs and Sven-Bodo Scholz

_𝛼 with cardinal infinity. extends _𝛼

𝑐 ::= · · ·
| ∞ (infinity constant)

Fig. 2. The syntax of _∞𝛼

several implications. First of all, our built-in arithmetic needs to be extended. We treat infinity in

the usual way, applying the model commonly known as a Riemann sphere. That is:

𝑧 + ∞ = ∞ 𝑧 ×∞ = ∞ 𝑧

∞ = 0

𝑧

0

= ∞

The following operations are undefined:

∞ +∞ ∞ −∞ ∞ × 0

0

0

∞
∞

While these additions to the semantics are trivial, allowing infinity to appear in shapes has a

more profound impact on our semantics. Our rule for imap-constructs (Imap-Strict) forces the
evaluation of all elements. If our result shape contains infinity, this can no longer be done. As

we want to maintain a strict evaluation regime for function applications in general, we turn our

imap-construct into a lazy data-structure which does not immediately compute its elements, but

only does so when individual elements are being inspected. For this purpose, we extend our set of

allowed values of our semantics with an imap-closure:

u

w
vimap 𝑝out |𝑝in

𝑔1 : 𝑒1,

. . .

𝑔𝑛 : 𝑒𝑛

, 𝜌

}

�
~

The imap closure contains pointers to frame and element shapes (𝑝out and 𝑝in correspondingly), the

list of partitions, where generators have been evaluated and the environment in which the imap
shall be evaluated. The overall idea is to update, in place, this closure whenever individual elements

are computed. With this extension, we can now replace our strict imap-rule by a lazy variant:

IMap-Lazy

𝑆 ; 𝜌 ⊢ 𝑒out ⇓ 𝑆1; 𝑝out ⇒ ⟨⟨_⟩, ®𝑠out⟩ 𝑆1; 𝜌 ⊢ 𝑒in ⇓ 𝑆2; 𝑝in ⇒ ⟨⟨_⟩, _⟩
𝑆1 = 𝑆2

𝑛

∀
𝑖=1

𝑆𝑖 ; 𝜌 ⊢ 𝑔𝑖 ⇓ 𝑆𝑖+1; 𝑝𝑔𝑖 ⇒ 𝑔𝑖 FormsPartition(®𝑠out, {𝑔1, . . . , 𝑔𝑛},)

𝑆 ; 𝜌 ⊢ imap 𝑒out |𝑒in

𝑔1 : 𝑒1,

. . .

𝑔𝑛 : 𝑒𝑛

⇓ 𝑆𝑛+1, 𝑝 ↦→

u

w
vimap 𝑝out |𝑝in

𝑔1 : 𝑒1,

. . .

𝑔𝑛 : 𝑒𝑛

; 𝜌

}

�
~ ; 𝑝

We can see that the new rule for imap-constructs, in essence, performs a subset of what the strict

rule from the previous section does. It still forces the result shapes, it still computes the boundaries

of the generators, and it checks the validity of the overall generator set. Once these computations

have been done, further element computation is delayed and an imap-closure is created instead.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Transfinite Arrays 1:13

The actual computation of elements is triggered upon element selection. Consequently, we need

a second selection rule which can deal with imap closures in the array argument position:

Sel-lazy-imap

𝑆 ; 𝜌 ⊢ 𝑖 ⇓ 𝑆1; 𝑝𝑖 ⇒ ⟨⟨_⟩, ®𝑣 ⟩ 𝑆1; 𝜌 ⊢ 𝑎 ⇓ 𝑆2; 𝑝𝑎 ⇒

u

w
vimap 𝑝out |𝑝in

𝑔1 𝑒1

. . .

𝑔𝑛 𝑒𝑛

, 𝜌 ′

}

�
~

𝑆2 (𝑝out) = ⟨⟨𝑚⟩, _⟩ (®𝚤, ®𝚥) = Split(𝑚, ®𝑣)
∃𝑘 : ®𝚤 ∈ 𝑔𝑘 𝑔𝑘 = Gen(𝑥𝑘 , _, _) 𝑆2, 𝑝 ↦→ E(®𝚤); 𝜌 ′, 𝑥𝑘 ↦→ 𝑝 ⊢ 𝑒𝑘 ⇓ 𝑆3; 𝑝®𝚤

𝑆3; 𝜌 ′, 𝑥 ↦→ 𝑝®𝚤 ⊢ 𝑥 .E(®𝚥) ⇓ 𝑆4; 𝑝 𝑆5 = UpdateIMap(𝑆4, 𝑝𝑎,®𝚤, 𝑝®𝚤)
𝑆 ; 𝜌 ⊢ 𝑎.𝑖 ⇓ 𝑆5; 𝑝

Selections into imap-closures happen at indices that are of the same length as the concatenation of

the imap frame and cell shapes. This means that the index the imap-closure is being selected from

has to be split into frame and cell sub-indices: ®𝚤 and ®𝚥 correspondingly. Given that 𝑔𝑘 contains ®𝚤, we
evaluate 𝑒𝑘 with 𝑥𝑘 being bound to ®𝚤. As this value may be non-scalar, we evaluate a selection into

it at ®𝚥. Finally, the evaluated generator expression is saved within the imap closure. This step is

performed by the helper function UpdateIMap, which splits the 𝑘-th partition into a single-element

partition containing ®𝚤 with the computed value 𝑝®𝚤 , and further partitions covering the remaining

indices of 𝑔𝑘 with the expression 𝑒𝑘 . For more details see [Anonymous-1 2018, Sec. 2.1.1].

With this, we can define and use infinite arrays in an overall strict setting. Let us consider the

definitions of the infinite array of natural numbers in _∞𝛼 on the left and Haskell-like definition on

the right:

na t s ≡ imap [∞] { _ (i v) : i v . [0] n a t s = 0 : map (+ 1) n a t s

Both versions define an object that delivers the value 𝑛 when being selected at any index 𝑛.

Both definitions provide a data structure whose computation unfolds in a lazy fashion. The main

difference is that the Haskell-like specification introduces dependencies between the elements

of the list. Arguably, for a large number of practical implementations, whenever an element 𝑛

is selected, the entire spine of the list, up to the 𝑛-th element, has to be in place. In the _∞𝛼 case,

the specification explicitly states how to compute the element at any position: the undersore in

the imap is similar to the _-binder. Therefore, we encode less dependencies, which means that

space-efficient implementation of imap closures can be derived with less analysis. For example, we

can envision representing imap closures as a hashmap.

The above comparison demonstrates important difference between a data-parallel programming

style and a list-based, inherently recursive programming style. This observation leads us to the

question whether similar recursive definitions are possible in _∞𝛼 at all?

2.6 Recursive Definitions
It turns out that the lazy imap, together with the letrec construct, allows for recursive definitions of
arrays. A recursive definition of the natural numbers, including 0, can be defined in _∞𝛼 by:

l e t r e c na t s = imap [∞] { [0] <= i v < [1] : 0 ,

[1] <= i v < [∞] : n a t s . (i v ¤− [1]) + 1 in na t s

The interesting question here is whether the semantics defined thus far ensures that all elements

of the array nats are actually being inserted into one and the same imap-closure. For this to happen,
we need the environment of the imap-closure to map nats to itself, and we need the selection within

the body of the imap to modify the closure from which it is selecting. While the latter is given

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Artjoms Šinkarovs and Sven-Bodo Scholz

through the Sel-Lazy-Imap-rule, the former is achieved through the rule for letrec-constructs. For

_𝛼 , we have:

Letrec

𝑆1 = 𝑆, 𝑝 ↦→ ⊥
𝜌1 = 𝜌, 𝑥 ↦→ 𝑝 𝑆1; 𝜌1 ⊢ 𝑒1 ⇓ 𝑆2; 𝑝2 𝑆3 = 𝑆2 [𝑝2/𝑝] 𝑆3; 𝜌, 𝑥 ↦→ 𝑝2 ⊢ 𝑒2 ⇓ 𝑆4; 𝑝𝑟

𝑆 ; 𝜌 ⊢ letrec 𝑥 = 𝑒1 in 𝑒2 ⇓ 𝑆4; 𝑝𝑟

where 𝑆 [𝑝2/𝑝] denotes substitution of the 𝑥 ↦→ 𝑝 bindings inside of the enclosed environments

with 𝑥 ↦→ 𝑝2, where 𝑥 is any legal variable name. This substitution is key for creating the circular

reference in the imap-closure from the example above.

In conclusion, the above recursive specification denotes an array with the same elements as

the data-parallel specification from the previous section. In contrast to data-parallel version, this

specification behaves much more like the recursive, Haskell-like version; the computation of

individual elements can no longer happen directly. Since there is an encoded dependency between

an element and its predecessor, the first access to an element at index 𝑛, in this variant, will trigger

the computation of all elements from 0 up to 𝑛. The implementation of the UpdateIMap operation

on imap-closures determines how these numbers are stored in memory and, consequently, how

efficiently they can be accessed.

The availability of direct indexes makes it possible to encode an arbitrary order for the recursion.

Consider the following example:

l e t r e c a = imap [1 0] { [9] <= i v < [1 0] : 9 ,

[0] <= i v < [9] : a . (i v ¤+ [1]) −1 in a

Selection of the 9th element can be evaluated in one step. In case of lists, the selection request

always starts at the beginning of the list. Hence, to obtain the same performance, some optimisation

of the list case is required.

2.7 List Primitives in the Array Setting
We have enabled two features that are inherent with lists, but that are usually not supported in an

array setting: recursively defined data-structures and infinite arrays. All that is required to achieve

this is a recursion-aware, lazy semantics of the imap-construct and the inclusion of an explicit

notion of infinity. With these extensions, the key primitives for lists, ℎ𝑒𝑎𝑑 , 𝑡𝑎𝑖𝑙 , and 𝑐𝑜𝑛𝑠 can be

defined as

head ≡ _a . a . [0]

t a i l ≡ _a . imap | a | ¤− [1] { _ (i v) : a . ([1] ¤+ i v)

cons ≡ _a . _b . imap [1] ¤+ | b | { [0] <= i v < [1] : a ,

[1] <= i v < [1] ¤+ | b | : b . (i v ¤− [1])

More complex list-like functions can be defined on top of these. An example is concatenation:

l e t r e c (++) = _a . _b . i f | a | . [0] = 0 then b

e l se cons (head a) ((t a i l a) ++ b) in (++)

In case 𝑎 is infinite, however, the above definition of concatenation is unsatisfying. The strict nature

of _𝛼 will force tail 𝑎 forever as

��𝑎��.[0] = 0 never yields true. The way to avoid this is to shift the

case distinction into the lazy imap construct:

(++) ≡ _a . _b . imap | a | ¤+ | b | { [0] <= i v < | a | : a . iv ,

| a | <= i v < | a | ¤+ | b | : b . (i v ¤− | a |)

As we have seen earlier, _𝛼 enables the typical constructions of recursive definitions of infinite

vectors well-known from the realm of lists such as list of ones, natural numbers or fibonacci

sequence.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Transfinite Arrays 1:15

Having a unified interface for arrays and lists enables programmers to switch the algorithmic

definitions of individual arrays from recursive to data-parallel styles without modifying any of the

code that operates on them.

However, such a unification comes at a price: we have to support a lazy version of the imap-
construct. As a consequence, we conceptually lose the advantage of𝑂 (1) access. Despite _𝛼 offering

many opportunities for compiler optimisations like pre-allocating arrays and potentially enforcing

strictness on finite, non-recursive imaps, one may wonder at this point how much _𝛼 differs from a

lazy array interface in a lazy, list-based language such as Haskell?

3 TRANSFINITE ARRAYS
We now investigate to what extent _∞𝛼 adheres to the key properties of array programming — array

algebras and array equalities.

3.1 Algebraic Properties
Array-based operations offer a number of beneficial algebraic properties. Typically, these properties

manifest themselves as universally valid equalities which, once established, improve our thinking

about algorithms and their implementations, and give rise to high-level program transformations.

We define equality between two non-scalar arrays 𝑎 and 𝑏 as

𝑎 == 𝑏 ⇐⇒ |𝑎 | = |𝑏 | ∧ ∀ iv < |𝑎 | : 𝑎.iv = 𝑏.iv

that is, we demand equality of the shapes and equality of all elements. The demand for equality of

shapes recursively implies equality in dimensionality and the extensional character of this definition

through the use of array selections ensures that we can reason about equality on infinite arrays as

well.

Arrays give rise to many algebras such as Theory of Arrays [More 1973], Mathematics of

Arrays [Mullin 1988], and Array Algebras [Glasgow and Jenkins 1988]. Most of the developed

algebras differ only slightly, and the set of equalities that are ultimately valid depends on some

fundamental choices, such as the ones we made in the beginning of the previous section. At the

core of these equalities is the ability to change the shape of arrays in a systematic way without

losing any of their data.

An equality from [Falster and Jenkins 1999] that plays a key role in consistent shapemanipulations

is:

reshape |𝑎 | (flatten 𝑎) == 𝑎 (1)

where flattenmaps an array recursively into a vector by concatenating its sub-arrays in a row-major

fashion and reshape performs the dual operation of bringing a row-major linearisation back into

multi-dimensional form. These operations can be defined in _∞𝛼 as

f l a t t e n ≡ _a . imap [count a] { _ (i v) : a . (o 2 i i v . [0] | a |)

r e shape ≡ _ shp . _a . imap shp { _ (i v) : (f l a t t e n a) . [i 2 o i v shp]

where count returns the product of all shape components and o2i and i2o translate offsets into
indices and vice versa, respectively. These operations effectively implement conversions from

mixed-radix systems into natural numbers using multiplications and additions and back using

division and remainder operations.

The above equality states that any array 𝑎 can be brought into flattened form and, subsequently

be brought back to its original shape. For arrays of finite shape 𝑠 , this follows directly from the fact

that o2i (i2o iv 𝑠) 𝑠 = iv for all legitimate index vectors iv into the shape 𝑠 .

If we want Eq. 1 to hold for all arrays in _∞𝛼 , we need to show that the above equality also holds

for arrays with infinite axes. Consider an array of shape 𝑠 = [2,∞]. For any legal index vector [1, 𝑛]

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Artjoms Šinkarovs and Sven-Bodo Scholz

into the shape 𝑠 , we obtain:

𝑜2𝑖 (𝑖2𝑜 [1, 𝑛] [2,∞]) [2,∞]) = 𝑜2𝑖 (∞ · 1 + 𝑛) [2,∞]
= 𝑜2𝑖 ∞ [2,∞]
= [∞ / ∞, ∞ % ∞]

which is not defined. We can also observe that all indices [1, 𝑛] are effectively mapped into the

same offset: ∞ which is not a legitimate index into any array in _∞𝛼 . This reflects the intuition that

the concatenation of two infinite vectors effectively looses access to the second vector.

The inability to concatenate infinite arrays also makes the following equality fail:

drop |𝑎 | (𝑎 ++ 𝑏) == 𝑏 (2)

where 𝑎 and 𝑏 are vectors and drop 𝑠 𝑥 removes first 𝑠 elements from the left. The reason is exactly

the same: given that |𝑎 | = [∞] and 𝑏 is of finite shape [𝑛], the shape of the concatenation is

[∞ + 𝑛] = [∞], and drop of |𝑎 | results in an empty vector.

Clearly, _∞𝛼 as presented so far is not strong enough to maintain universal equalities such as Eq. 1

or 2. Instead, we have to find a way that enables us to represent sequences of infinite sequences

that can be distinguished from each other.

3.2 Ordinals
When numbers are treated in terms of cardinality, they describe the number of elements in a set.

Addition of two cardinal numbers 𝑎 and 𝑏 is defined as a size of a union of sets of 𝑎 and 𝑏 elements.

This notion also makes it possible to operate with infinite numbers, where the number of elements

in an infinite set is defined via bijections. As a result, differently constructed infinite sets may end

up having the same number of elements. For example, if there exists a bijection from N × N into N,
the cardinality of both sets is the same.

When studying arrays, treating their shapes and indices using cardinal numbers is an over-

simplification, because arrays have richer structure. Arrays are collections of ordered elements,

where the order is established by the indices. Ordinal numbers, as introduced by G. Cantor in 1883,

serve exactly this purpose — to “label” positions of objects within an ordered collection. When

collections are finite, cardinals and ordinals can be used interchangeably, as we can always count

the labels. Infinite collections are quite different in that regard: despite being of the same size, there

can be many non-isomorphic well-orderings of an infinite collection. For example, consider two

infinite arrays of shapes [∞, 2] and [2,∞]. Both of these have infinitely many elements, but they

differ in their structure. From a row major perspective, the former is an infinite sequence of pairs,

whereas the latter are two infinite sequences of scalars. Ordinals give a formal way of describing

such different well-orderings.

First let us try to develop an intuition for the concept of ordinal numbers and then we give a

formal definition. Consider an ordered sequence of natural numbers: 0 < 1 < 2 < · · · . These are
the first ordinals. Then, we introduce a number called 𝜔 that represents the limit of the above

sequence: 0 < 1 < 2 < · · · < 𝜔. Further, we can construct numbers beyond 𝜔 by putting a “copy”

of natural numbers “beyond” 𝜔 :

0 < 1 < 2 < · · ·𝜔 < 𝜔 + 1 < 𝜔 + 2 < · · · < 𝜔 + 𝜔

For the time being, we treat operations such as 𝜔 + 𝑛 symbolically. The number 𝜔 + 𝜔 which can

be also denoted as 𝜔 · 2 is the second limit ordinal that limits any number of the form 𝜔 + 𝑛, 𝑛 ∈ N.
Such a procedure of constructing limit ordinals out of already constructed smaller ordinals can be

applied recursively. Consider a sequence of 𝜔 · 𝑛 numbers and its limit:

0 < 𝜔 < 𝜔 · 2 < 𝜔 · 3 < · · · < (𝜔 · 𝜔 = 𝜔2)

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Transfinite Arrays 1:17

and we can carry on further to 𝜔𝑛
, 𝜔𝜔

, etc. Note though that in the interval from 𝜔2
to 𝜔3

we have

infinitely many limit ordinals of the form:

𝜔2 < 𝜔2 + 𝜔 < 𝜔2 + 𝜔 · 2 < · · · < 𝜔3

and between any two of these we have a “copy” of the natural numbers:

𝜔2 + 𝜔 < 𝜔2 + 𝜔 + 1 < · · · < 𝜔2 + 𝜔 · 2

3.2.1 Formal definitions. A totally ordered set ⟨𝐴, <⟩ is said to be well ordered if and only if every
nonempty subset of 𝐴 has a least element [Ciesielski 1997]. Given a well-ordered set ⟨𝑋, <⟩ and
𝑎 ∈ 𝑋 , 𝑋𝑎

def

= {𝑥 ∈ 𝑋 |𝑥 < 𝑎}. An ordinal is a well-ordered set ⟨𝑋, <⟩, such that: ∀𝑎 ∈ 𝑋 : 𝑎 = 𝑋𝑎 . As

a consequence, if ⟨𝑋, <⟩ is an ordinal then < is equivalent to ∈. Given a well-ordered set𝐴 = ⟨𝑋, <⟩
we define an ordinal that this set is isomorphic to as𝑂𝑟𝑑 (𝐴, <). Given an ordinal 𝛼 , its successor is

defined to be 𝛼 ∪ {𝛼}. The minimal ordinal is ∅ which is denoted with 0. The next few ordinals are:

1 = {0} = {∅}
2 = {0, 1} = {∅, {∅}}
3 = {0, 1, 2} = {∅, {∅}, {∅, {∅}}}

· · ·
A limit ordinal is an ordinal that is greater than zero that is not a successor. The set of natural

numbers {0, 1, 2, 3, . . . } is the smallest limit ordinal that is denoted 𝜔 . We use islim 𝑥 to denote that

𝑥 is a limit ordinal.

3.2.2 Arithmetic on Ordinals.

Addition. Ordinal addition is defined as 𝛼+𝛽 = 𝑂𝑟𝑑 (𝐴, <𝐴), where𝐴 = {0}×𝛼 ∪ {1}×𝛽 and <𝐴 is

the lexicographic ordering on𝐴. Ordinal addition is associative but not commutative. As an example

consider expressions 2 + 𝜔 and 𝜔 + 2. The former can be seen as follows: 0 < 1 < 0
′ < 1

′ < · · ·,
which after relabeling is isomorphic to 𝜔 . However, the latter can be seen as: 0 < 1 < · · · < 0

′ < 1
′
,

which has the largest element 1
′
, whereas 𝜔 does not. Therefore 2 + 𝜔 = 𝜔 < 𝜔 + 2. We have used

0
′
, 1

′
to indicate the right hand side argument of the addition.

Subtraction. Ordinal subtraction can be defined in two ways, as partial inverse of the addition on

the left and on the right. For left subtraction, which will be used by default throughout this paper

unless otherwise specified, 𝛼 − 𝛽 is defined when 𝛽 ≤ 𝛼 , as: ∃b : 𝛽 + b = 𝛼 . As ordinal addition is

left-cancelative (𝛼 + 𝛽 = 𝛼 + 𝛾 =⇒ 𝛽 = 𝛾), left subtraction always exists and it is unique.

Right subtraction is a bit harder to define as:

• it is not unique: 1 + 𝜔 = 2 + 𝜔 but 1 ≠ 2; therefore 𝜔 −𝑅 𝜔 can be any number that is less

than 𝜔 : {0, 1, 2, . . . }.
• even if 𝛽 < 𝛼 , the difference 𝛼 − 𝛽 might not exist. For example: 42 < 𝜔 ; however, 𝜔 −𝑅 42

does not exist as �b : b + 42 = 𝜔 .

Despite those difficulties, right subtraction can be useful at times and can be defined for 𝛼 −𝑅 𝛽 :

min{b : b + 𝛽 = 𝛼}

Multiplication. Ordinal multiplication 𝛼 · 𝛽 = 𝑂𝑟𝑑 (𝐴, <𝐴) where 𝐴 = 𝛼 × 𝛽 and <𝐴 is the

lexicographic ordering on 𝐴. Multiplication is associative and left-distributive to addition:

𝛼 · (𝛽 + 𝛾) = (𝛼 · 𝛽) + (𝛼 · 𝛾)
However, multiplication is not commutative and is not distributive on the right: 2 · 𝜔 = 𝜔 < 𝜔 · 2

and (𝜔 + 1) · 𝜔 = 𝜔 · 𝜔 < 𝜔 · 𝜔 + 𝜔 .

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Artjoms Šinkarovs and Sven-Bodo Scholz

Exponentiation. Exponentiation can be defined using transfinite recursion: 𝛼0 = 1, 𝛼𝛽+1 = 𝛼𝛽 · 𝛼
and for limit ordinals _: 𝛼_ =

⋃
0<b<_

𝛼b
.

𝜖-ordinals. Using ordinal operations we can construct the following hierarchy of ordinals:

0, 1, . . . , 𝜔, 𝜔 +1, . . . , 𝜔 ·2, 𝜔 ·2+1, . . . , 𝜔2, . . . , 𝜔3, . . . 𝜔𝜔 , The smallest ordinal for which 𝛼 = 𝜔𝛼

is called 𝜖0. It can also be seen as a limit of the following 𝜔𝜔 , 𝜔𝜔𝜔

, . . . , 𝜔𝜔 ...

.

3.2.3 Cantor Normal Form. For every ordinal 𝛼 < 𝜖0 there are unique 𝑛, 𝑝 < 𝜔, 𝛼1 > 𝛼2 > · · · >
𝛼𝑛 and 𝑥1, . . . , 𝑥𝑛 ∈ 𝜔 \ {0} such that 𝛼 > 𝛼1 and 𝛼 = 𝜔𝛼1 · 𝑥1 + · · · + 𝜔𝛼𝑛 · 𝑥𝑛 + 𝑝 . Cantor Normal

Form makes provides a standardized way of writing ordinals. It uniquely represents each ordinal

as a finite sum of ordinal powers, and can be seen as an 𝜔 based polynomial. This can be used as a

basis for an efficient implementation of ordinals and their operations.

3.3 _𝜔 : Adding Ordinals to _𝛼

The key contribution of this paper is the introduction of _𝜔 , a variant of _𝛼 , which use ordinals

as shapes and indices of arrays and which reestablishes global equalities in the context of infinite

arrays.

Before revisiting the equalities, we look at the changes to _𝛼 that are required to support

transfinite arrays. Syntactically, to introduce ordinals in the language, we make two minor additions

to _𝛼 . Firstly, we add ordinals
4
as scalar constants. Secondly, we add a built-in operation, islim,

which takes one argument and returns true if the argument is a limit ordinal and false otherwise.
For example: islim 𝜔 reduces to true and islim (𝜔 + 21) reduces to false.

_𝛼 with ordinals extends _𝛼

𝑒 ::= · · ·
| islim (limit ordinal predicate)

𝑐 ::= · · ·
| 𝜔,𝜔 + 1, . . . (ordinals)

Fig. 3. The syntax of _𝜔 .

Semantically, it turns out that all core rules can be kept unmodified apart from the aspect that all

helper functions, arithmetic, and relational operations now need to be able to deal with ordinals

instead of natural numbers. In particular, the semantic for lazy imaps as developed for _∞𝛼 can be

used unaltered, provided that all helper functions involved such as for splitting generators etc. are
expanded to cope with ordinals.

3.4 Array Equalities Revisited
With the support of Ordinals in _𝜔 , we can now revisit our equalities Eq. 1 and 2. Let us first look

at the counter example for Eq. 1: from Section 3.1: With an array shape 𝑠 = [2, 𝜔] and a legal index

vector into 𝑠 [1, 𝑛], we now obtain:

𝑜2𝑖 (𝑖2𝑜 [1, 𝑛] [2, 𝜔]) [2, 𝜔]) = 𝑜2𝑖 (𝜔 + 𝑛) [2, 𝜔]
= [(𝜔 + 𝑛) / 𝜔, (𝜔 + 𝑛) % 𝜔]
= [1, 𝑛]

4
Technically, we support ordinal values only up to 𝜔𝜔

, as ordinals are constructed using the constant 𝜔 and +, −, ∗, / and
% operations (no built-in ordinal exponentiation).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Transfinite Arrays 1:19

The crucial difference to the situation from _∞𝛼 in Section 3.1 here is the ability to divide (𝜔 + 𝑛)
by 𝜔 and to obtain a remainder, denoted by %, of that division as well. By means of induction over

the length of the shape and index vectors this equality can be proven to hold for arbitrary shapes

in _𝜔 , and, based on this proof, Eq. 1 can be shown as well.

In the same way as the arithmetic on ordinals is key to the proof of Eq. 1, it also enables the

proof of Eq. 2 for arbitrary ordinal-shaped vectors
5 𝑎 and 𝑏, with the definition of ++ from the

previous section and drop being defined as:

drop ≡ _ s . _a . imap | a | ¤−s { [0] <= i v < | a | ¤−s : a . (s ¤+ i v)

After inlining ++ and drop, the left hand side of Eq. 2 can be rewritten as:

l e t r e c ab = imap | a | ¤+ | b | { [0] <= j v < | a | : a . jv ,

| a | <= j v < | a | ¤+ | b | : b . (j v ¤− | a |) in

imap | ab | ¤− | a | { [0] <= i v < | ab | ¤− | a | : ab . (| a | ¤+ i v)

Consider the shape of the goal expression of the letrec. According to the semantics of the shape of

an imap, we get: |ab| ¤−|𝑎 |. The shape of ab is |𝑎 | ¤+|𝑏 |. According to ordinal arithmetic: (|𝑎 | ¤+|𝑏 |) ¤−|𝑎 |
is |𝑏 |. Therefore the shapes of right-hand and left-hand sides of the goal expressions are the same.

Let us rewrite the last imap as:

imap | b | { [0] <= i v < | b | : ab . (| a | ¤+ i v)

Consider now selections into ab. All the selections into ab will happen at indices that are greater

than 𝑎. This is because all the legal iv in the imap are from the range [0] to |𝑏 |.
According to the semantics of selections into imaps, ab.(|𝑎 | ¤+iv) will select from the second

partition of the imap that defines ab, and will evaluate to: 𝑏.((|𝑎 | ¤+iv) ¤−|𝑎 |). According to ordinal
arithmetic, (|𝑎 | ¤+iv) ¤−|𝑎 | is identical to iv, therefore we can rewrite the previous imap as:

imap | b | { [0] <= i v < | b | : b . i v

As it can be seen, this is an identity imap, which is extensionally equivalent to 𝑏.

4 EXAMPLES
Transfinite tail. As explained in Section 3.3, the shift from natural numbers to ordinals as indices

in _𝜔 implies corresponding extensions of the built-in arithmetic operations. As these operations

lose key properties, such as commutativity, once arguments exceed the range of natural numbers,

we need to ensure that function definitions for finite arrays extend correctly to the transfinite case.

As an example, consider the definition of tail from the previous section:

t a i l ≡ _a . imap | a | ¤− [1] { _ (i v) : a . ([1] ¤+ i v)

For the case of finite vectors, we can see that a vector shortened by one element is returned, where

the first element is missing and all elements have been shifted to the left by one element.

Let us assume we apply tail to an array 𝑎 with |𝑎 | = [𝜔]. The arithmetic on ordinals gives us a

return shape of [𝜔] ¤−[1] = [𝜔]. That is, the tail of an infinite array is the same size as the array

itself, which matches our common intuition when applying tail to infinite lists. The elements of that

infinite list are those of 𝑎, shifted by one element to the right, which, again, matches our expected

interpretation for lists.

Now, assume we have |𝑎 | = [𝜔 + 42], which means that (tail 𝑎).[𝜔] should be a valid expression.

For the result shape of tail 𝑎, we obtain [𝜔 + 42] ¤−[1] = [𝜔 + 42]. A selection (tail 𝑎).[𝜔] evaluates
to 𝑎.([1] ¤+[𝜔]) = 𝑎.[𝜔]. This means that the above definition of the tail shifts all the elements

at indices smaller than [𝜔] one left, and leaves all the other unmodified. While this may seem

5
Eq. 2 can be generalised and shown to hold in the multi-dimensional case, provided that ++ and drop operate over the

same axis.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Artjoms Šinkarovs and Sven-Bodo Scholz

counter-intuitive at first, it actually only means that tail can be applied infinitely often but will

never be able to reach “beyond” the first limit.

Finally, observe that the body of the imap-construct in the definition of tail uses [1] ¤+iv is an index
expression, not iv ¤+[1]. In the latter case, the tail function would behave differently beyond [𝜔]: it
would attempt to shift elements to the left. However, this would make the overall definition faulty.

Consider again the case when |𝑎 | = [𝜔 +42]: the shape of the result would be |𝑎 |, which would mean

that it would be possible to index at position [𝜔 + 41], triggering evaluation of 𝑎.([𝜔 + 41] ¤+[1])
and consequently, producing an index error, or out-of-bounds access into 𝑎.

Zip. Let us now define zip of two vectors that produces a vector of tuples. Consider a Haskell

definition of zip function first:

zip (a : a s) (b : bs) = (a , b) : zip as bs

zip _ _ = []

The result is computed lazily, and the length of the resulting list is a minimum of the lengths of

the arguments. Like concatenation, a literal translation into _𝜔 is possible, but it has the same

drawbacks, i.e. it is restricted to arrays whose shape has no components bigger than 𝜔 .

A better version of zip that can be applied to arbitrary transfinite arrays looks as follows:

z i p ≡ _a . _b . imap (min | a | | b |) | [2] { _ (i v) : [a . iv , b . i v]

Here, we use a constant array in the body of the imap. This forces evaluation of both arguments,

even if only one of them is selected. This can be changed by replacing the constant array with an

imap:
z i p ≡ _a . _b . imap (min | a | | b |) | [2] { _ (i v) : imap [2] { [0] <= j v < [1] a . iv ,

[1] <= j v < [2] b . i v

which can be fused in a single imap as follows:

z i p ≡ _a . _b . l e t r e c s = (min | a | | b |) . [0] in
imap [s , 2] { [0 , 0] <= i v < [s , 1] : a . [i v . [0]] ,

[0 , 1] <= i v < [s , 2] : b . [i v . [0]]

Data Layout and Transpose. A typical transformations in stream programming is changing the

granularity of a stream and joining multiple streams. In _𝜔 , these transformations can be expressed

by manipulating the shape of an infinite array. Consider changing the granularity of a stream 𝑎 of

shape [𝜔] into a stream of pairs:

imap (| a |
¤/ [2]) | [2] { _ (i v) : [a . [2 ∗ i v . [0]] , a . [2 ∗ i v . [0] + 1]]

or we can express the same code in a more generic fashion:

(_n . r e shape ((| a |
¤/ [n]) ++ [n]) a) 2

This code can operate on the streams of transfinite length, as well. If we envision compiling such

a program into machine code, the infinite dimension of an array can be seen as a time-loop, and

the operations at the inner dimension seen as a stream-transforming function. Such granularity

changes are often essential for making good use of (parallel) hardware resources, e.g. FPGAs.
Transposing a stream makes it possible to introduce synchronisation. Consider transforming a

stream 𝑎 of shape [2, 𝜔] into a stream of pairs (shape [𝜔, 2]):
imap [𝜔] | [2] { _ (i v) : [a . [i v . [0] , 0] , a . [i v . [0] , 1]]

Conceptually, an array of shape [2, 𝜔] represents two infinite streams that reside in the same data

structure. An operation on such a data structure can progress independently on each stream, unless

some dependencies on the outer index are introduced. A transpose, as above, makes it possible to

introduce such a dependency, ensuring that the operations on both streams are synchronized. A

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Transfinite Arrays 1:21

key to achieving this is the ability to re-enumerate infinite structures, and ordinal-based infinite

arrays make this possible.

Ackermann function. The true power of multidimensional infinite arrays manifests itself in

definitions of non-primitive-recursive sequences as data. Consider the Ackermann function, defined

as a multi-dimensional stream:

l e t r e c a = imap [𝜔 , 𝜔] { _ (i v) : l e t r e c m = iv . [0] in
l e t r e c n = i v . [1] in
i f m = 0 then n + 1

e l se i f m > 0 and n = 0 then a . [m−1 , 1]

e l se a . [m−1 , a . [m, n −1]] in a

Such a treatment of multi-dimensional infinite structures enables simple transliteration of

recursive relations as data. Achieving similar recursive definitions when using cons-lists is possible,

but they have a subtle difference. Consider a Haskell definition of the Ackermann function in data:

a = [[i f m == 0 then n+1

e l se i f m > 0 then a ! ! (m−1) ! ! 1

e l se a ! ! (m−1) ! ! (a ! ! m ! ! (n − 1))

| n <− [0 . .]]

| m <− [0 . .]]

We use two [0..] generators for explicit indexing, even though at runtime, all necessary elements

of the list will be present. The lack of explicit indexes forces one to use extra objects to encode the

correct dependencies, essentially implementing imap in Haskell. Conceptually, these generators

constitute two further locally recursive data structures. Whether they can be always can be op-

timised away is not clear. Avoiding these structures in an algorithmic specification can be a major

challenge.

Game of Life. As a final example, consider Conway’s Game of Life which describes an evolution

of cells on a plane. The most interesting aspect of this example is the fact that we can encode it

in _𝜔 in such a way that the shape of the plane is never specified. This means that the program

can operate with infinite planes, e.g. of shape [𝜔,𝜔], as well as finite 2d planes with no changes to

source code.

First we introduce a few generic helper functions:

(or) ≡ _a . _b . i f a then a e l se b

(and) ≡ _a . _b . i f a then b e l se a

any ≡ _a . reduce or f a l s e a

gen ≡ _ s . _v . imap s { _ (i v) : v

↖ ≡ _v . _a . imap | a | { _ (i v) : i f any (i v ¤+v ¤>= | a |) then 0 e l se a . (i v ¤+v)
↘ ≡ _v . _a . imap | a | { _ (i v) : i f any (i v ¤< v) then 0 e l se a . (i v ¤−v)

or and and encode logical conjunction and disjunction, respectively. any folds an array of boolean

expressions with the disjunction, and gen defines an array of shape 𝑠 whose values are all identical

to 𝑣 . More interesting are the functions↖ and↘. Given a vector 𝑣 and an array 𝑎, they shift all

elements of 𝑎 towards decreasing indices or increasing indices by 𝑣 elements, respectively. Missing

elements are treated as the value 0.

Now, we define a single step of the 2-dimensional Game of Life in APL style
6
: two-dimensional

array 𝑎 by:

g o l _ s t e p ≡ _a .

l e t r e c F = [↖ [1 , 1] , ↖ [1 , 0] , ↖ [0 , 1] , _ x . ↖ [1 , 0] (↘ [0 , 1] x) ,

↘ [0 , 1] , ↘ [1 , 0] , ↘ [1 , 1] , _ x . ↘ [1 , 0] (↖ [0 , 1] x)]

in l e t r e c
c = (reduce (_ f . _g . _x . f x ¤+ g x) (_x . gen | a | 0) F) a

in

6
See this video by John Scholes for more details: https://youtu.be/a9xAKttWgP4

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://youtu.be/a9xAKttWgP4

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Artjoms Šinkarovs and Sven-Bodo Scholz

imap | a | { _ (i v) : i f (c . i v = 2 and a . i v = 1) or (c . i v = 3)

then 1

e l se 0

We assume an encoding of a live cell in 𝑎 to be 1, and a dead cell to be 0. The array 𝐹 contains

partial applications of the two shift functions to two-element vectors so that shifts into all possible

directions are present. The actual counting of live cells is performed by a function which folds 𝐹

with the function _𝑓 ._𝑔._𝑥 .𝑓 𝑥 + 𝑔 𝑥 . This produces 𝑐 , an array of the same shape as 𝑎, holding the

numbers of live cells surrounding each position. Defining the shift operations ↖ and ↘ to insert 0

ensures that all cells beyond the shape of 𝑎 are assumed to be dead.

The definition of the result array is, therefore, a straightforward imap, implementing the rules of

birth, survival and death of the Game of Life.

5 TRANSFINITE ARRAYS VS. STREAMS
Streams have attracted a lot of attention due to the many algebraic properties they expose. [Hinze

2010] provides a nice collection of examples, many of which are based on the observation that

streams form an applicative functor. Transfinite arrays are applicative functors as well, not only for

arrays of shape [𝜔], but also for any given shape shp. With definitions:

pure ≡ _x . imap shp { _ (i v) : x

(⋄) ≡ _a . _b . imap shp { _ (i v) : a . i v b . i v

we obtain for arbitrary arrays 𝑢, 𝑣 ,𝑤 , and 𝑥 of shape shp:

(pure _𝑥 .𝑥) ⋄𝑢 == 𝑢 (pure (_𝑓 ._𝑔._𝑥 .𝑓 (𝑔 𝑥))) ⋄𝑢 ⋄ 𝑣 ⋄𝑤 == 𝑢 ⋄ (𝑣 ⋄𝑤)

(pure 𝑓) ⋄ (pure 𝑥) == pure (𝑓 𝑥) 𝑢 ⋄ (pure 𝑥) == (pure (_𝑓 .𝑓 𝑥)) ⋄𝑢

This shows that arbitrarily shaped arrays of finite size have this property, as also shown by [Gib-

bons 2017], and that these properties can be expanded into ordinal-shaped arrays. Classical streams

are a special instance of these, i.e. arrays of shape [𝜔].
For stream operations that insert or delete elements, it is less obvious whether these can be

easily extended into ordinal-shaped arrays other than shape [𝜔]. As an example, let us consider the

function filter , which takes a predicate 𝑝 and a vector 𝑣 and returns a vector that contains only

those elements 𝑥 of 𝑣 that satisfy (𝑝 𝑥). A direct definition of filter can be given as:

f i l t e r ≡ _p . _v . i f (p v . [0]) then v . [0] ++ f i l t e r p (t a i l v)

e l se f i l t e r p (t a i l v)

This definition, in principle, is applicable to arrays of any ordinal shape, but the use of tail in the

recursive calls inhibits application beyond 𝜔 . Furthermore, the strict semantics of _𝜔 inhibits a

terminating application to any infinite array, including arrays of shape [𝜔]. For the same reason, a

definition of filter through the built-in reduce is restricted to finite arrays.

To achieve possible termination of the above definition of filter for transfinite arrays, we would
need to change to a lazy regime for all function applications in _𝜔 and we would need to change

the semantics of imap into a variant where the shape computation can be delayed as well. Even if

that would be done, we would still end up with an unsatisfying solution. The filtering effect would

always be restricted to the elements before the first limit ordinal 𝜔 . This limitation breaks several

fundamental properties, like those defined in [Bird 1987], that hold in the finite and stream cases.

As an example, consider distributivity of filter over concatenation:

filter 𝑝 (𝑎 ++ 𝑏) == (filter 𝑝 𝑎) ++ (filter 𝑝 𝑏) (3)

This property holds for finite arrays, but fails with the above definition of filter in case 𝑎 is infinite.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Transfinite Arrays 1:23

To regain this property for transfinite arrays, we need to apply filter to all elements of the

argument array, not only those before the first limit ordinal 𝜔 . When doing this in the context of

_𝜔 , the necessity to have a strict shape for every object forces us to “guess” the shape of the filtered

result in advance. The way we “guess” has an impact on the filter-based equalities that will hold

universally.

In this paper we propose a scheme that respects the above equality. For finite arrays filter works
as usual, and for the infinite ones, we postulate that the result of filtering will be of an infinite-shape:

∀𝑝∀𝑎 : |𝑎 | ≥ 𝜔 =⇒ |filter 𝑝 𝑎 | ≥ 𝜔

This is further applied to all infinite sequences contained within the given shape as follows:

∀𝑖 < |𝑎 | : (∃islim 𝛼 : 𝑖 < 𝛼 ≤ |𝑎 |) =⇒ (∃𝑘 ∈ N : 𝑝 (𝑎.(𝑖 + 𝑘)) = true)
We assume that each infinite sequence contains infinitely many elements for which the predicate

holds. Consequently, any limit ordinal component of the shape of the argument is carried over

to the result shape and only any potential finite rest undergoes potential shortening. Consider a

filter operation, applied to a vector of shape [𝜔 · 2]. Following the above rationale, the shape of the
result will be [𝜔 · 2] as well. This means that the result of applying filter to such an expression

should allow indexing from {0, 1, . . . } as well as from {𝜔,𝜔 + 1, . . . } delivering meaningful results.

This decision can lead to non-termination when there are only finitely many elements in the

filtered result. For example:

f i l t e r (_x . x > 0) (imap [𝜔 +2] { _ (i v) : 0)

reduces to an array of shape [𝜔], which effectively is empty. Any selection into it will lead to a

non-terminating recursion.

The overall scheme may be counter-intuitive, but it states that for every index position of the

output, the computation of the corresponding value is well-defined.

Assuming the aforementioned behaviour of filter , Eq. 3 holds for all transfinite arrays. Another
universal equation that holds for all transfinite vectors concerns the interplay of filter and map:

filter 𝑝 (map 𝑓 𝑎) == map 𝑓 (filter (𝑝 · 𝑓) 𝑎)
The proposed approach does not only respect the above equalities, but it also behaves similarly

to filtering of streams that can be found in languages such as Haskell: filter applied to an infinite

stream cannot return a finite result.

In principle, the chosen filtering scheme can be defined in _𝜔 by using the islim predicate within

an imap. However, the resulting definition is neither concise, nor likely to be runtime efficient.

Given the importance of filter, we propose an extension of _𝜔 . Fig. 4 shows the syntactical extension

of _𝜔 .

_𝜔 with filters extends _𝜔

𝑒 ::= · · ·
| filter 𝑒 𝑒 (filter operation)

Fig. 4. The syntax of _𝜔 with filters.

As filter conceptually is an alternative means of constructing arrays, its semantics is similar to that

of imap. In particular, it constitutes a lazy array constructor, whose elements are being evaluated

upon demand created through selections. Technically, this means that we have to introduce a new

value to keep filter-closures, a rule that builds such a closure from filter expression, and we need to

define the selection operation that forces evaluation within the filter closure.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Artjoms Šinkarovs and Sven-Bodo Scholz

We introduce as new value for filter-closures:
u

w
vfilter 𝑝 𝑓 𝑝𝑒

𝛼1 𝑣1

𝑟 𝑣
1

𝑖

. . .

𝛼𝑛 𝑣𝑛𝑟 𝑣𝑛𝑖

}

�
~

which contains the pointer to the filtering function 𝑝 𝑓 , the shape of the argument we are filtering

over (𝑝𝑒) and the list of partitions that consist of a limit ordinal, and a pair of partial result and

natural number: 𝑣𝑟 and 𝑣𝑖 correspondingly.

On every selection at index [b + 𝑛], where b is a limit ordinal or zero, and 𝑛 is a natural number,

we find a b partition within the filter closure or add a new one if it is not there. Every partition

keeps a vector with a partial result of filtering (𝑣𝑟), and the index (𝑣𝑖) with the following property:

the element in the array we are filtering over at position b + (𝑣𝑖 − 1) is the last element in the 𝑣𝑟 ,

given that 𝑣𝑟 > 0. This means that if 𝑛 is within 𝑣𝑟 , we return 𝑣𝑟 .[𝑛]. Otherwise, we extend 𝑣𝑟 until
its length becomes 𝑛 + 1 using the following procedure: inspect the element in 𝑝𝑒 at the position

b + 𝑣𝑖 — if the predicate function evaluates to true, append this element to 𝑣𝑟 and increase 𝑣𝑖 by one,

otherwise, increase 𝑣𝑖 by one.

A formal description of this procedure can be found in [Anonymous-1 2018, Sec. 2.1.4].

6 IMPLEMENTATION
We implement _𝜔 in a system called Heh, which can be found in the anonymous supplementary

materials. Heh contains:

(1) an interpreter for _𝜔 covering the full language, and

(2) a compiler for the strict and finite subset of _𝜔 .

The interpreter can be seen as a proof of concept that the proposed semantics is implementable.

The implementation is an almost literal translation of the semantic rules provided in the paper

into Ocaml code. We carefully implement updates in-place for imap and filter closures, ensuring
that these constructs are evaluated lazily rather than in normal order. All examples provided in the

paper can be found in that repository, and run, correctly, in Heh.

Compilation of the finite subset of _𝜔 is achieved by translating _𝜔 programs into SaC programs

and subsequently using the compiler sac2c to produce binaries. Multi-core and GPU backends

of sac2c can be leveraged to execute strict and finite _𝜔 programs in parallel on these types of

architectures. The Heh implementation comes with more than a 100 unit tests for its internal

components.

In the interpreter, ordinals are represented by their Cantor Normal Form. The algorithms for

implementing operations on ordinals are based on [Manolios and Vroon 2005]. In the same paper,

we also find an in-depth study of the complexities of ordinal operations: comparisons, additions and

subtractions have complexities 𝑂 (𝑛), where 𝑛 is the minimum of the lengths of both arguments;

multiplications have the complexity 𝑂 (𝑛 ·𝑚), where𝑚 and 𝑛 are the lengths of the two argument

representations.

6.1 Performance considerations
Our compiler for the strict and finite sublanguage of _𝜔 shows that this part of the language can be

mapped into languages such as SaC, leading to high-performance execution potential on variouss

platforms [Šinkarovs et al. 2013; Wieser et al. 2012]. Whether the full-fledged version of _𝜔 can be

compiled into high-performance codes as well, mainly relies on the answers to two questions:

(1) how can we handle finite expressions that are defined by means of recursive imaps, and
(2) what is the most efficient representation for transfinite arrays.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Transfinite Arrays 1:25

Recursive imaps. Strict data parallel languages like SaC rarely support recursive imap constructs,

even if the shape of the result is finite. There are two difficulties: (i) the evaluation of recursive

imaps results in the necessity to support imap closures; (ii) parallel implementation of a recurs-

ive imap becomes trickier because of potential dependencies between the elements of an array.

In [Anonymous-2 2018] we propose an elegant solution to this problem. We introduce a mechanism

that switches from strict to lazy evaluation of a potentially recursive imap. It is demonstrated that

the lifetime of imap closures is kept to a minimum and that a parallel implementation is possible.

Furthermore, the proposed solution enables the detection of cyclic array definitions that diverge

under strict semantics.

Data structures. The current semantics prescribes that, when evaluating selections into a lazy

imap, the partition that contains the index that is to be selected from has to be split into a single-

element partition and the remainder. This means that, as the number of selections into the imap
increases, the structure that stores partitions of the imap will have to deal with a large number

of single-element arrays. Partitions can be stored in a tree, providing 𝑂 (log𝑛) look-up; however
triggering a memory allocation for every scalar is likely to be very inefficient. An alternate approach

would be to allocate larger chunks, each of which would store a subregion of the index space of

an imap. When doing so, we would need to establish a policy on the size of chunks and chose

a mechanism on how to indicate evaluated elements in a chunk. Another possibility would be

to combine the chunking with some strictness speculation, using a technique similar to the one

presented in [Anonymous-2 2018]. That way, a single element selection could trigger the evaluation

of an entire chunk.

Memory management. An efficient memory management model is not obvious. In case of strict

arrays, reference counting is known to be an efficient solution [Cann 1989; Grelck and Scholz 2006].

For lazy data structures, garbage collection is usually preferable. Most likely, the answer lies in a

combination of those two techniques.

The imap construct offers an opportunity for garbage collection at the level of partitions. Consider
a lazy imap of boolean values with a partition that has a constant expression:

imap [𝜔] { . . . , l <= i v < u : f a l s e , . . .

Assume further that neighbouring partitions evaluate to false. In this case, we can merge the

boundaries of partitions and instead of keeping values in memory, the partition can be treated as a

generator. However, an efficient implementation of such a technique is non-trivial.

Ordinals. An efficient implementation of ordinals and their operations is also essential. Here, we

couldmake use of the fact that _𝜔 is limited to ordinals up to𝜔𝜔
. For further details see [Anonymous-

1 2018, Sec. 4]

7 RELATEDWORK
Several works propose to extend the index domain of arrays to increase expressibility of a language.

A straightforward way to do this is to stay within cardinal numbers but add a notion of∞, similarly

to what we have proposed in _∞𝛼 . Similar approach is described in [McDonnell and Shallit 1980]; in

J [Jsoftware 2016] infinity is supported as a value, but infinite arrays are not allowed. As we have

seen, by doing so we lose a number of array equalities.

In [More 1973, page 137] we read: ‘A restriction of indices to the finite ordinal numbers is a

needless limitation that obscures the essential process of counting and indexing.’ We cannot agree

more. [More 1973] describes an axiomatic array theory that combines set theory and APL. The

theory is self contained and gives rise to a number of array equalities. However, the question on

how this theory can be implemented (if at all) is not discussed.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Artjoms Šinkarovs and Sven-Bodo Scholz

In [Taylor 1982] the authors propose to extend the domain of array indices with real numbers.

More specifically, a real-valued function gives rise to an array in which valid indices are those that

belong to the domain of that function. The authors investigate expressibility of such arrays and

they identify classes of problems where this could be useful, but neither provide a full theory nor

discuss any implementation-related details.

Besides the related work that stems from APL and the plethora of array languages that evolved

from it, there is an even larger body of work that has its origins in lists and streams. One of the

best-known fundamental works on the theory of lists using ordered pairs can be found in [McCarthy

1960, sec. 3], where a class of S-expressions is defined. The concepts of nil and cons are introduced,
as well as car and cdr, for accessing the constituents of cons.

The Theory of Lists [Bird 1987] defines lists abstractly as linearly ordered collections of data. The

empty list and operations like length of the list, concatenation, filter, map and reduce are introduced

axiomatically. Lists are assumed to be finite. The questions of representation of this data structure

in memory, or strictness of evaluation, are not discussed.

Concrete Stream Calculus [Hinze 2010] introduces streams as codata. Streams are similar to

McCarthy’s definition of lists, in that they have functions head and tail, but they lack nil. This
requires streams to be infinite structures only. The calculus is presented within Haskell, rendering

all evaluation lazy.

Coinduction and codata are the usual way to introduce infinite data structures in programming

languages [Jeannin et al. 2012; Kozen and Silva 2016]. Key to the introduction of codata typically is

the use of coinductive semantics [Leroy and Grall 2009]. In our paper, the use of ordinals keeps

the semantics inductive and deals with infinite objects by means of ordinals. In [Turner 1995], the

author investigates a model of a total functional language, in which codata is used to define infinite

data objects.

Streams are also related to dataflowmodels, such as [Estrin and Turn 1963; Kahn 1974; Petri 1962].

The computation graphs in the latter can be seen as recursive expressions on potentially infinite

streams. As demonstrated in [Beck et al. 2015], there is a demand to consider multi-dimensional

infinite streams that cache their parts for better efficiency.

Two array representations, called push arrays and pull arrays, are presented in [Svensson and

Svenningsson 2014]. Pull arrays are treated as objects that have a length and an index-mapping

function; push arrays are structures that keep sequences of element-wise updates. The imap defined
here can be considered an advanced version of a pull array, with partitions and transfinite shape.

The availability of partitions circumvents a number of inefficiencies, (e.g. embedded conditionals)

of classical pull arrays; the ordinals, in the context of the imap-construct, enable the expression of

streaming algorithms.

The #Id language, presented in [Heller 1989], is similar to _𝜔 ; It combines the idea of lazy data

structures with an eager execution context.

In [Atkey and McBride 2013; Møgelberg 2014], the authors propose a system that makes it

possible to reason whether a computation defined on an infinite stream is productive
7
— a question

that can be transferred directly to _𝜔 . Their technique lies in the introduction of a clock abstraction

which limits the number of operations that can be made before a value must be returned. This

approach has some analogies with defining explicit “windows” on arrays, as for example proposed

in [Hammes et al. 1999], or guarantees that programs run in constant space in [Lippmeier et al.

2016].

One of the key features of the array language described in this paper is the availability of strict

shape for any expression of the language. Combining this with updates in place, which can be

7
The computation will eventually produce the next item, i.e. it is not stuck.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Transfinite Arrays 1:27

achieved by means of monads [Wadler 1995], uniqueness typing [Barendsen and Smetsers 1996] or

reference counting [Grelck and Scholz 2006], very efficient code generation becomes possible.

Strict shapes can be encoded in types as well. Specifically in the dependently-typed system, such

an approach can be very powerful. The work on container theory [Abbott et al. 2005] allows a very

generic description of indexed objects capturing ideas of shapes and indices in types. A very similar

idea in the context of arrays is described in [Gibbons 2017]. The work on dependent type systems

for array languages include [Slepak et al. 2014; Trojahner and Grelck 2009; Xi and Pfenning 1998].

Finally, a way to extend a type theory to include the notion of ordinals can be found in [Hancock

2000].

8 CONCLUSIONS AND FUTUREWORK
This paper proposes transfinite arrays as a basis for an applied _-calculus _𝜔 . The distinctive

feature of transfinite arrays is their ability to capture arrays with infinitely many elements, while

maintaining structure within that infiniteness. The number of axes is preserved, and individual

axes can contain infinitely many infinite subsequences of elements. This capability extends many

structural properties that hold for finite arrays into the transfinite space.

The embedding of transfinite arrays into _𝜔 allows for recursive array definitions, offering an

opportunity to transliterate typical list-based algorithms, including algorithms on infinite lists

for stream processing, into a generic array-based form. The paper presents several examples to

this effect, and provides some efficiency considerations for them. It remains to be seen if these

considerations, in practice, enable a truly unified view of arrays, lists, and streams.

The array-based setting of _𝜔 allows this recursive style of defining infinite structures to be taken

into a multi-dimensional context, enabling elegant specification of inherently multi-dimensional

problems on infinite arrays. As an example, we present an implementation of Conway’s Game of

Life which, despite looking very similar to a formulation for finite arrays, is defined for positive

infinities on both axes. Within _𝜔 , accessing neighbouring elements along both axes can be specified

without requiring traversals of nested cons lists.

We also present an implementation for the Ackerman function, using a 2-dimensional transfinite

array, one axis per parameter. The resulting code adheres closely to the abstract declarative formu-

lation of the function, while also implicitly generating a basis for a memoising implementation of

the algorithm.

An interesting aspect of transfinite arrays is that ordinal-based indexing opens up an avenue

to express transfinite induction in data in very much the same way as nil and cons are duals to
the principle of mathematical induction. This can not be done easily using cons lists as there is no
concept of a limit ordinal in that context. It may be possible to encode this principle by means of

nesting, but then one would need a type system or some sort of annotations to distinguish lists of

transfinite length from nested lists. The imap construct from the proposed formalism can be seen

as an elegant solution to this.

The fact that imap supports random access and is powerful enough to capture list and stream

expressions alike opens up an exciting perspective for the implementation of _𝜔 . When arrays

are finite, it is possible to reuse one of the existing efficient array-based implementations. When

arrays are infinite, we can use list or stream implementations to encode _𝜔 , but at the same time

the properties of the original _𝜔 programs open the door to rich program analysis and alternative

representations. We believe that many functional languages striving for performance could benefit

from the proposed design, at least when the destinction between finite and infinite arrays can be

statically determined be it through annotation or inference.

The concept of transfinite arrays as proposed in this paper offers several new and interesting

possibilities for further investigation. As discussed in the implementation section, it is not yet

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Artjoms Šinkarovs and Sven-Bodo Scholz

clear what the most efficient implementations for our proposed infinite structures are. Choices of

representation affect both memory management design and the guarantees that our semantics can

provide.

Further research into type systems for _𝜔 would also be interesting. Not only could type systems

guarantee absense of indexing errors but they could deliver the destinction between finite and

infinite casesi as well. The type system we describe in the paper can serve as a starting point.

Decidability aspects around ordinals have raised interest independently. The first-order theory of

ordinal addition is known to be decidable [Büchi 1990], but more complex ordinal theories can

quickly get undecidable [Choffrut 2002].

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science Foundation under Grant

No. nnnnnnn and Grant No. mmmmmmm. Any opinions, findings, and conclusions or recommend-

ations expressed in this material are those of the author and do not necessarily reflect the views of

the National Science Foundation.

REFERENCES
Michael Abbott, Thorsten Altenkirch, and Neil Ghani. 2005. Containers: Constructing strictly positive types. Theoretical

Computer Science 342, 1 (2005), 3 – 27. https://doi.org/10.1016/j.tcs.2005.06.002 Applied Semantics: Selected Topics.

Anonymous-1. 2018. Operational Semantics of Lambda-omega. Can be found in the anonymous supplementary materials.

(2018). heh/semantics/lambda-omega-semantics.pdf

Anonymous-2. 2018. Recursive Array Comprehensions in a Call-by-Value Language. Can be found in the anonymous

supplementary materials. (2018). heh/array-comprehensions/rec-array-comprehensions.pdf

Robert Atkey and Conor McBride. 2013. Productive Coprogramming with Guarded Recursion. In Proceedings of the 18th
ACM SIGPLAN International Conference on Functional Programming (ICFP ’13). ACM, New York, NY, USA, 197–208.

https://doi.org/10.1145/2500365.2500597

Erik Barendsen and Sjaak Smetsers. 1996. Uniqueness Typing for Functional Languages with Graph Rewriting Semantics.

Mathematical Structures in Computer Science 6, 6 (1996), 579–612.
Jarryd P. Beck, John Plaice, andWilliamW.Wadge. 2015. Multidimensional infinite data in the language Lucid. Mathematical

Structures in Computer Science 25, 7 (2015), 1546–1568. https://doi.org/10.1017/S0960129513000388
Robert Bernecky. 1987. An Introduction to Function Rank. ACM SIGAPL Quote Quad 18, 2 (Dec. 1987), 39–43.

Robert Bernecky. 1993. The Role of APL and J in High-performance Computation. ACM SIGAPL Quote Quad 24, 1 (Aug.

1993), 17–32.

Robert Bernecky and Paul Berry. 1993. SHARP APL Reference Manual (2nd ed.). Iverson Software Inc., Iverson Software Inc.,

33 Major St., Toronto, Canada.

Robert Bernecky and Kenneth E. Iverson. 1980. Operators and Enclosed Arrays. In APL Users Meeting 1980. I.P. Sharp
Associates Limited, I.P. Sharp Associates Limited, Toronto, Canada, 319–331.

R. S. Bird. 1987. An Introduction to the Theory of Lists. In Proceedings of the NATO Advanced Study Institute on Logic of
Programming and Calculi of Discrete Design. Springer-Verlag New York, Inc., New York, NY, USA, 5–42. http://dl.acm.

org/citation.cfm?id=42675.42676

Larry M. Breed, Roger D. Moore, Luther Woodrum, Richard Lathwell, and Adin Falkoff. 1972. (1972). http://www.

computerhistory.org/atchm/the-apl-programming-language-source-code The APL\360 source code is available at the
Computer History Museum.

J. Richard Büchi. 1990. Transfinite Automata Recursions and Weak Second Order Theory of Ordinals. Springer New York, New

York, NY, 437–457. https://doi.org/10.1007/978-1-4613-8928-6_24

D.C. Cann. 1989. Compilation Techniques for High Performance Applicative Computation. Technical Report CS-89-108.

Lawrence Livermore National Laboratory, LLNL, Livermore California.

Christian Choffrut. 2002. Elementary Theory of Ordinals with Addition and Left Translation by𝜔 . Springer Berlin Heidelberg,

Berlin, Heidelberg, 15–20. https://doi.org/10.1007/3-540-46011-X_2

K. Ciesielski. 1997. Set Theory for the Working Mathematician. Cambridge University Press.

Martin Elsman and Martin Dybdal. 2014. Compiling a Subset of APL Into a Typed Intermediate Language. In Proceedings of
ACM SIGPLAN International Workshop on Libraries, Languages, and Compilers for Array Programming (ARRAY’14). ACM,

New York, NY, USA, Article 101, 6 pages. https://doi.org/10.1145/2627373.2627390

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.1016/j.tcs.2005.06.002
heh/semantics/lambda-omega-semantics.pdf
heh/array-comprehensions/rec-array-comprehensions.pdf
https://doi.org/10.1145/2500365.2500597
https://doi.org/10.1017/S0960129513000388
http://dl.acm.org/citation.cfm?id=42675.42676
http://dl.acm.org/citation.cfm?id=42675.42676
http://www.computerhistory.org/atchm/the-apl-programming-language-source-code
http://www.computerhistory.org/atchm/the-apl-programming-language-source-code
https://doi.org/10.1007/978-1-4613-8928-6_24
https://doi.org/10.1007/3-540-46011-X_2
https://doi.org/10.1145/2627373.2627390

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Transfinite Arrays 1:29

G. Estrin and R. Turn. 1963. Automatic Assignment of Computations in a Variable Structure Computer System. IEEE
Transactions on Electronic Computers EC-12, 6 (Dec 1963), 755–773. https://doi.org/10.1109/PGEC.1963.263559

Peter Falster and Michael Jenkins. 1999. Array Theory and Nial.
Jeremy Gibbons. 2017. APLicative Programming with Naperian Functors. In European Symposium on Programming (LNCS),

Hongseok Yang (Ed.), Vol. 10201. 568–583. https://doi.org/10.1007/978-3-662-54434-1_21

J. I. Glasgow and M. A. Jenkins. 1988. Array theory, logic and the Nial language. In Proceedings. 1988 International Conference
on Computer Languages. 296–303. https://doi.org/10.1109/ICCL.1988.13077

Clemens Grelck and Sven-Bodo Scholz. 2006. SAC - A Functional Array Language for Efficient Multi-threaded Execution.

International Journal of Parallel Programming 34, 4 (2006), 383–427. https://doi.org/10.1007/s10766-006-0018-x

Jeffrey P. Hammes, Bruce A. Draper, and A. P. Willem Böhm. 1999. Sassy: A Language and Optimizing Compiler for
Image Processing on Reconfigurable Computing Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 83–97. https:

//doi.org/10.1007/3-540-49256-9_6

Peter Hancock. 2000. Ordinals and interactive programs. Ph.D. Dissertation.
S.K. Heller. 1989. Efficient lazy data structures on a data-flow machine. Technical report. Number TR-438.

Ralf Hinze. 2010. Concrete Stream Calculus: An Extended Study. J. Funct. Program. 20, 5-6 (Nov. 2010), 463–535. https:
//doi.org/10.1017/S0956796810000213

Roger K.W. Hui and Kenneth E. Iverson. 1998. J Dictionary.
IBM. 1994. APL2 Programming: Language Reference (second ed.). IBM Corporation. SH20-9227.

Kenneth E. Iverson. 1962. A Programming Language. John Wiley & Sons, Inc., New York, NY, USA.

Jean-Baptiste Jeannin, Dexter Kozen, and Alexandra Silva. 2012. CoCaml: Programming with Coinductive Types. Technical
Report http://hdl.handle.net/1813/30798. Computing and Information Science, Cornell University.

Michael A. Jenkins and Lenore R. Mullin. 1991. A Comparison of Array Theory and a Mathematics of Arrays. Springer US,
Boston, MA, 237–267. https://doi.org/10.1007/978-1-4615-4002-1_14

Inc. Jsoftware. 2016. Jsoftware: High performance development platform. http://www.jsoftware.com/. (2016).

Gilles Kahn. 1974. The Semantics of Simple Language for Parallel Programming.. In IFIP Congress. 471–475.
G. Kahn. 1987. Natural semantics. In STACS 87, FranzJ. Brandenburg, Guy Vidal-Naquet, and Martin Wirsing (Eds.). Lecture

Notes in Computer Science, Vol. 247. Springer Berlin Heidelberg, 22–39. https://doi.org/10.1007/BFb0039592

Dexter Kozen and Alexandra Silva. 2016. Practical coinduction. Mathematical Structures in Computer Science FirstView
(February 2016), 1–21. https://doi.org/10.1017/S0960129515000493

Xavier Leroy and Hervé Grall. 2009. Coinductive big-step operational semantics. Information and Computation 207, 2 (Feb.

2009), 284–304. https://doi.org/10.1016/j.ic.2007.12.004

Ben Lippmeier, Fil Mackay, and Amos Robinson. 2016. Polarized Data Parallel Data Flow. In Proceedings of the 5th
International Workshop on Functional High-Performance Computing (FHPC 2016). ACM, New York, NY, USA, 52–57.

https://doi.org/10.1145/2975991.2975999

Panagiotis Manolios and Daron Vroon. 2005. Ordinal Arithmetic: Algorithms and Mechanization. Journal of Automated
Reasoning 34, 4 (2005), 387–423. https://doi.org/10.1007/s10817-005-9023-9

John McCarthy. 1960. Recursive Functions of Symbolic Expressions and Their Computation by Machine, Part I. Commun.
ACM 3, 4 (April 1960), 184–195. https://doi.org/10.1145/367177.367199

Eugene E. McDonnell and Jeffrey O. Shallit. 1980. Extending APL to Infinity. In APL 80 : International Conference on APL,
Gijsbert van der Linden (Ed.). Amsterdam ; New York : North-Holland Pub. Co. : sole distributors for the USA and Canada,

Elsevier North-Holland, 123–132.

Rasmus Ejlers Møgelberg. 2014. A Type Theory for Productive Coprogramming via Guarded Recursion. In Proceedings of
the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) (CSL-LICS ’14). ACM, New York, NY, USA, Article 71,

10 pages. https://doi.org/10.1145/2603088.2603132

Trenchard More. 1973. Axioms and Theorems for a Theory of Arrays. IBM J. Res. Dev. 17, 2 (March 1973), 135–175.

https://doi.org/10.1147/rd.172.0135

Lenore Mullin and Scott Thibault. 1994. A Reduction Semantics for Array Expressions: The PSI Compiler. Technical Report
CSC-94-05. University of Missouri-Rolla.

Lenore M. Restifo Mullin. 1988. A Mathematics of Arrays. Ph.D. Dissertation. Syracuse University.
Carl Adam Petri. 1962. Kommunikation mit Automaten. Ph.D. Dissertation. Universität Hamburg.

Justin Slepak, Olin Shivers, and Panagiotis Manolios. 2014. An Array-Oriented Language with Static Rank Polymorphism.

In Proceedings of the 23rd European Symposium on Programming Languages and Systems - Volume 8410. Springer-Verlag
New York, Inc., New York, NY, USA, 27–46. https://doi.org/10.1007/978-3-642-54833-8_3

Robert Stephens. 1997. A survey of stream processing. Acta Informatica 34, 7 (01 Jul 1997), 491–541. https://doi.org/10.1007/
s002360050095

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.1109/PGEC.1963.263559
https://doi.org/10.1007/978-3-662-54434-1_21
https://doi.org/10.1109/ICCL.1988.13077
https://doi.org/10.1007/s10766-006-0018-x
https://doi.org/10.1007/3-540-49256-9_6
https://doi.org/10.1007/3-540-49256-9_6
https://doi.org/10.1017/S0956796810000213
https://doi.org/10.1017/S0956796810000213
http://hdl.handle.net/1813/30798
https://doi.org/10.1007/978-1-4615-4002-1_14
http://www.jsoftware.com/
https://doi.org/10.1007/BFb0039592
https://doi.org/10.1017/S0960129515000493
https://doi.org/10.1016/j.ic.2007.12.004
https://doi.org/10.1145/2975991.2975999
https://doi.org/10.1007/s10817-005-9023-9
https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/2603088.2603132
https://doi.org/10.1147/rd.172.0135
https://doi.org/10.1007/978-3-642-54833-8_3
https://doi.org/10.1007/s002360050095
https://doi.org/10.1007/s002360050095

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 Artjoms Šinkarovs and Sven-Bodo Scholz

Bo Joel Svensson and Josef Svenningsson. 2014. Defunctionalizing Push Arrays. In Proceedings of the 3rd ACM SIGPLAN
Workshop on Functional High-performance Computing (FHPC ’14). ACM, New York, NY, USA, 43–52. https://doi.org/10.

1145/2636228.2636231

R. W.W. Taylor. 1982. Indexing Infinite Arrays: Non-finite Mathematics in APL. SIGAPL APL Quote Quad 13, 1 (July 1982),

351–355. https://doi.org/10.1145/390006.802264

William Thies, Michal Karczmarek, and Saman P. Amarasinghe. 2002. StreamIt: A Language for Streaming Applications. In

Proceedings of the 11th International Conference on Compiler Construction (CC ’02). Springer-Verlag, London, UK, UK,
179–196. http://dl.acm.org/citation.cfm?id=647478.727935

Kai Trojahner and Clemens Grelck. 2009. Dependently typed array programs don’t go wrong. The Journal of Logic and
Algebraic Programming 78, 7 (2009), 643 – 664. https://doi.org/10.1016/j.jlap.2009.03.002 The 19th Nordic Workshop on

Programming Theory (NWPT 2007).

D. A. Turner. 1995. Elementary strong functional programming. Springer Berlin Heidelberg, Berlin, Heidelberg, 1–13.

https://doi.org/10.1007/3-540-60675-0_35

A. Šinkarovs, S.B. Scholz, R. Bernecky, R. Douma, and C. Grelck. 2013. SAC/C Formulations of the All-Pairs N-Body

Problem and their Performance on SMPs and GPGPUs. Concurrency and Computation: Practice and Experience (2013).
https://doi.org/10.1002/cpe.3078

Philip Wadler. 1995. Monads for functional programming. Springer Berlin Heidelberg, Berlin, Heidelberg, 24–52. https:

//doi.org/10.1007/3-540-59451-5_2

V. Wieser, C. Grelck, P. Haslinger, J. Guo, F. Korzeniowski, R. Bernecky, B. Moser, and S.B. Scholz. 2012. Combining High

Productivity and High Performance in Image Processing Using Single Assignment C on Multi-core CPUs and Many-core

GPUs. Journal of Electronic Imaging 21, 2 (2012). https://doi.org/10.1117/1.JEI.21.2.021116

Hongwei Xi and Frank Pfenning. 1998. Eliminating Array Bound Checking Through Dependent Types. In Proceedings of the
ACM SIGPLAN 1998 Conference on Programming Language Design and Implementation (PLDI ’98). ACM, New York, NY,

USA, 249–257. https://doi.org/10.1145/277650.277732

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.1145/2636228.2636231
https://doi.org/10.1145/2636228.2636231
https://doi.org/10.1145/390006.802264
http://dl.acm.org/citation.cfm?id=647478.727935
https://doi.org/10.1016/j.jlap.2009.03.002
https://doi.org/10.1007/3-540-60675-0_35
https://doi.org/10.1002/cpe.3078
https://doi.org/10.1007/3-540-59451-5_2
https://doi.org/10.1007/3-540-59451-5_2
https://doi.org/10.1117/1.JEI.21.2.021116
https://doi.org/10.1145/277650.277732

	Abstract
	1 Introduction
	2 Extending Arrays to Infinity
	2.1 Syntax Definition and Informal Semantics of lambda-alpha
	2.2 Towards a Type System for
	2.3 Formal Semantics of lambda-alpha
	2.4 Core Rules
	2.5 Infinite Arrays
	2.6 Recursive Definitions
	2.7 List Primitives in the Array Setting

	3 Transfinite Arrays
	3.1 Algebraic Properties
	3.2 Ordinals
	3.3 Lambda-omega: Adding Ordinals to lambda-alpha
	3.4 Array Equalities Revisited

	4 Examples
	5 Transfinite Arrays vs. Streams
	6 Implementation
	6.1 Performance considerations

	7 Related Work
	8 Conclusions and Future Work
	Acknowledgments
	References

