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Abstract. In pursuit of requirements of modern software, high-perfor-
mance computing often offers a narrowly-tailored solutions that reduce
portability of software. As one of such examples in this paper, we con-
sider the situation with SIMD accelerators, whose importance seriously
increased in the last decade. Firstly appeared in the early 90es, being ori-
ented exclusively on graphics acceleration, nowadays SIMD CPU exten-
sions are used in a variety of fields. The lack of standard and incompati-
bility of instruction sets through the different types of CPUs substantially
increase the complexity of developing portable applications within the
extensions. In this paper we present an abstraction layer implemented as
a set of C language extensions within the GNU GCC compiler which pro-
vides an interface for SIMD vectors and operations independently from
the architecture. First of all, these abstractions allow to exploit SIMD
extensions of a CPU explicitly, which is useful when auto-vectoriser fails.
Secondly, the abstractions are general enough to be mapped to any hard-
ware supporting SIMD paradigms; hence the new abstractions could be
considered as a step forward to a new C language standard.

1 Introduction

Starting from the early 90es most of the computational platforms have incorpo-
rated Single Instruction Multiple Data (SIMD) extensions into their processors.
The SIMD mechanisms allow architectures to explore data-parallelism by exe-
cuting one and the same operation on multiple data objects packed into a vector
register that holds several scalar values. Efficient use of SIMD instructions proves
increasingly important for achieving excellent performance in a variety of appli-
cations. Most computationally intensive applications spend most of their time
inside a few hot-spots, typically the innermost loops. These very often apply
arithmetic operations on large sets of indexed data, a situation very amenable
to SIMD instructions. If applicable, such a use of SIMD instructions immedi-
ately increases performance of the loop several times depending on the size of
the scalar data type. On current hardware one can expect speed-ups of factor
two or four when operating with floating point numbers. Besides the immediate
gains, the use of SIMD operations is typically orthogonal to any gains obtained
from multi-threaded execution, i.e., in case of a successful SIMD optimisation
the overall speed-up can be obtained by multiplying the speed-up due to the use
of SIMD instructions with the number of cores available. Finally, we can observe
that the length of vector registers provided by new architectures doubles every



several years: Starting with 64 bit registers, the SSE architecture increased this
to 128 bits, AVX operates on 256-bits and the MIC architecture already has
512-bit long vector registers. This suggests that algorithms suitable for SIMD
operations should directly benefit from these innovations.

In an ideal world we would like to see all the inner-loop refactoring to happen
automatically under the hood of a compiler. A lot of very successful research in
this direction has been done already [9,12,10,3]. Most modern compilers including
GNU’s GCC, Intel’s ICC, and LLVM are equipped with some form of auto-
vectoriser. However, even the smartest auto-paralleliser is bound to be limited
to the code pattern it has been programmed to recognise.

This paper is concerned with the situation the programmer is left in if this
happens, i.e., when the auto-vectoriser fails despite dealing with some code that
can be transformed into a SIMD suitable form. In that situation, it would be
desirable if the programmer could explicitly instruct the compiler where to in-
sert SIMD instructions. While this can always be achieved by inserting inline-
assembly into the program, this constitutes an inherently non-portable solution.
Not only does this imply a lock-in into a particular architecture, it also inhibits
an immediate benefit from larger vector sizes in the next generation.

Furthermore, it puts quite some additional burden on the programmer as he
has to acquire an in-depth understanding of the architecture that is being tar-
geted. He also has to make sure that the interfacing between the inline assembly
and the C context is handled properly which either requires some difficult to read
and maintain wrapper code or the use of intrinsic operations, which are provided
by most modern compilers. However, these are typically translated into literal
wrappers which improves on readability only but does not resolve any of the
other issues.

Last but not least, an inline assembly approach inhibits any optimisations
across these operations such as constant propagation, code reorganisation or any
optimisation that requires in-depth knowledge of the operation.

In this paper we propose a set of C language extensions which provide a full
support for vectors and vector-operations independently from the architecture.
The vector operations are being dispatched to the SIMD extensions of a CPU
if they are present, or implemented with a number of scalar operations, other-
wise. The key design criteria were to come up with an as small as possible set
of extensions that is large enough to i) benefit from the various existing SIMD
instruction sets available on the market today, and to ii) enable the program-
mer to conveniently express various SIMD applications. Rather than inventing
a completely new set of abstractions that suit these criteria, we build on the
set of abstractions for SIMD operations that have been proposed in the con-
text of OpenCL [8]. However, in contrast to OpenCL, we have integrated these
operations into the GNU GCC compiler [5].

The rest of the paper is organized as follows: in Section 2 we present a part
of BZIP2 compression as a running example. We discuss its potential for the use
of SIMD operations and to what extent these can be achieved without making
use of our proposed extensions. Section 3 describes the extensions we propose



and explains to what extent these have been integrated into GCC v4.7. Section
4 illustrates how these extensions can be applied to our running example and
quantifies its effect on the overall runtime of BZIP2 in a platform independent
manner. After an extensive discussion of related work in Section 5, we conclude
with a brief summary of the benefits and disadvantages of the approach we have
taken in Section 6 and Section 7 provides suggestions for future work.

2 Motivation

As a running example we will consider a Move To Front (MTF) transformation
which is used in modern compressing algorithms. This algorithm can be vec-
torised, however the pattern of the vectorisation is non-trivial and none of the
auto-vectorisers we have tried out succeeded.

2.1 Move To Front (MTF) Algorithm

In order to improve compression algorithms which use Burrows-Wheeler Trans-
formation (BWT) [2] as an additional post-processing step one can use Move
To Front (MTF) transformation. After applying BWT we expect to get a string
containing groups of repeating characters; for example ‘aaaabbbccc’. In order
to decrease an entropy of the message and improve the efficiency of further
Huffman encoding [6] we replace every symbol of the message with its position
in the alphabet and move the symbol in the alphabet to the first place (or to
the front as name suggests). In our case after encoding the string we will get
‘0000100200’ assuming that the initial alphabet is ‘abc’. The MTF is being used
in BZIP2 compression; the reverse version (unMTF) is used while decompres-
sion. In this paper we consider the latter algorithm and its vectorisation. The
trivial implementation of the unMTF is the following:

char unMTF(char alphabet [ 2 5 6 ] , int idx )
{

char c = alphabet [ idx ] ;

for ( ; idx > 0 ; idx−−)
a lphabet [ idx ] = aplhabet [ idx −1] ;

return alphabet [ 0 ] = c ;
}

The encoded message is an array of positions in the alphabet. To decode the
message we read it from left to right and we use the same initial alphabet as
during the encoding. The algorithm step replaces each element of the message
with the symbol of the alphabet pointed by the element and moves the character
to the front of the alphabet. The algorithm implemented as above is inefficient
– it has O(N) worst case complexity, where N is a length of the alphabet. The
implementation used in BZIP2 reduces the worst case complexity to O(

√
N) by

dividing the alphabet in
√
N chunks, performing then above transformation on a

single chunk where the given element is located and updating all the front-facing



chunks applying constant-time operation. The implementation of this approach
looks as following:

#define N 4096
char alphabet [N ] ;
short ptr [ 1 6 ] = {N−256 , N−256+16, N−256+16∗2, N−256+16∗3, . . . } ;

void rotate segment (char ∗v , int idx )
{

i f ( idx == 0)
return ;

do
v [ idx ] = v [ idx −1] ;

while (−− idx ) ;
}

void r ea r range a lphabe t ( )
{

int i , j , k = N−1;
for ( i = 15 ; i >= 0 ; i−−)
{

for ( j = 15 ; j >= 0 ; j−−)
a lphabet [ k ] = alphabet [ ptr [ i ] + j ] , k−−;

ptr [ i ] = k + 1 ;
}

}

void unMTF( int idx )
{

int i , q , r , c ;

i f ( idx == 0)
return ;

q = idx / 16 ;
r = idx % 16 ;
c = alphabet [ ptr [ q ] + r ] ;

ro tate segment (&alphabet [ ptr [ q ] ] , r ) ;

ptr [ q]++;
for ( i = q ; i > 0 ; i−−)
{

ptr [ i ]−−;
a lphabet [ ptr [ i ] ] = alphabet [ ptr [ i −1]+15];

}

alphabet[−−ptr [ 0 ] ] = c ;
i f ( ptr [ 0 ] == 0)

r ea r range a lphabe t ( ) ;
}

The main idea of the approach is based on the following observation: shifting a
whole chunk n symbols to the right can be achieved by decreasing the starting
position of the chunk by n and filling n symbols in the front. In order to change
the starting position of a chunk we have to allocate an alphabet-array which must
be bigger than the length of the alphabet. We also have to store the starting
positions of all the chunks – we use an array called ptr for that purpose. As each
unMTF step potentially moves chunks to the left, eventually the first chunk will
reach the first position in the alphabet-array, in that case the alphabet-array



has to be rearranged by putting all the chunks at the end of the array; this is
done using rearrange_alphabet function. In order to perform an unMTF with
a single chunk rotate_segment function is being used.

In BZIP2 the length of the alphabet is 256 which after dividing into chunks
gives us 16 chunks each of which is 16 characters long. Conveniently enough
standard SIMD register these days is 128-bit long which is exactly one chunk.
It means that rearrange_array can move chunks with two vector instructions
rather than with 16 scalar. The fact that most of the SIMD architectures support
permutations within a vector gives us a chance to implement a vectorised version
of rotate_segment. Now, how the desired vectorisation can be expressed?

Auto-vectorisers we tried out did not consider any of the functions suitable for
the vectorisation. There are several reasons for that: first of all, roatate_segment
signature does not contain any information about the maximal values of idx, so
a compiler can only deduce this information from the calling context. Secondly,
a compiler needs to apply a cost model to prove that the transformation is ben-
eficial, but this is not an easy task as a potential vectorisation may increase a
number of instructions which affects an instruction pipeline; or add conditions
which affect branch prediction; or change the memory access; etc. Without the
knowledge that a particular function is a hot-spot a compiler can take a decision
not to vectorise a function even if it is possible in theory.

In order to express rotate_segment explicitly in a portable SIMD way we
have to have an interface for vector permutation. In GCC it was impossible
before we added it with version 4.7. Alternatively one can express permutation
using inline assembly, but disregard the fact it is non-portable, even for one
architecture one may end-up creating several variants of the code. For example:
Intel SSE3 has a pshufb instruction which does a byte-level permutation; any
lower version of SSE support 32-bit elements permutations only which require a
programmer to come-up with vector shifting and masking scheme which is less
efficient and in case the architecture uses AVX another version of the code is
needed.

Vectorisation of rearrange_alphabet can be done in a portable way starting
from GCC v3.2, declaring a variable of vector type and for every chunk loading
it to the variable and storing back into the memory. The code for the function
looks as following:

typedef char a t t r i b u t e ( ( v e c t o r s i z e (16 ) , a l i gned ( 4 ) ) ) xchar ;
#define unal igned (x ) ( ( xchar ∗) x )
void r ea r range a lphabe t ( )
{

int i ;
for ( i = 15 ; i >= 0 ; i−−)
{

vec to r (16 , char ) vec = ∗ unal igned (&alphabet [ ptr [ i ] ] ) ;
short idx = N−256+16∗ i ;

∗( vec to r (16 , char ) ∗)&alphabet [ idx ] = vec ;
ptr [ i ] = idx ;

}
}



Some architectures like for example Intel, differentiate aligned and unaligned
vector loads providing two separate instructions for this purpose. In the code
above we have to take care of the cases when a vector-assignment access un-
aligned memory. In order to inform a compiler we mark potentially unaligned
memory by converting it to the vector type with minimal alignment.

3 C Vector Extensions

It turned that vector permutation is not the only missing feature which makes
vector programming framework incomplete. Analysing common operations in
different SIMD accelerators and combining them with scalar operations available
in C we managed to identify the set of operations which is complete enough to
program most of the SIMD algorithms. As we base our framework on GCC, the
following features were missing there:

1. Vector indexing in the same style arrays are being indexed.

2. Vector element-wise and whole vector shifting. Element-wise shifting should
take a special care when a target supports vector/scalar combination.

3. Scalar/vector and vector/scalar operations like 1 + {2, 3}.

4. Vector comparison using standard comparison operations: >, <, etc.

5. Vector permutations in its most generic way.

Now we would like to give an idea about all the interfaces available in GCC
with respect to the explicit vectorisation. The first step towards vector program-
ming is to declare a vector type which can be done using a notion of attributes.
Consider the following variable declaration example:

int a t t r i b u t e ( ( v e c t o r s i z e ( 1 6 ) ) ) var ;

The int type specifies the base type of the vector, and the attribute specifies
the length of the vector type measured in bytes. In the declaration above, given
that int is a 32-bit type we define a vector of 4 ints. The basic type of the vector
can be both signed and unsigned integer types: char, short, int, long and long

long. In addition float and double can be used to define a floating-point vector
types. The size of the vector type can be any number which is a power of two.
Vector types are treated in the same way as C base types, it means that one can
create variables of vector types, create pointers to vector types and use sizeof

operator, use vector type when declaring a function argument or function return
type, make type-casts. In the latter case, casting from one vector type to another,
one must make sure the types are of the same size.

Defining a vector variable one can assign a constant value using an array
notation. Consider the following example:

#define vec to r ( e lcount , type ) \
a t t r i b u t e ( ( v e c t o r s i z e ( ( e l count )∗ s izeof ( type ) ) ) ) type

vec to r (4 , f loat ) pp = {3 . , . 1 , . 4 , . 1 } ;



Here we declare a pp variable of vector type of 4 floats and initialize the
variable with values 3.0, 0.1, 0.4 and 0.1. Keep in mind, that if the initiali-
sation vector contains less elements than the type, the missing elements will be
implicitly filled with zeroes without a warning being produced. For example:

vec to r (8 , short ) v = {1 , 2 , 3} ;

In this case the compiler would initialize v with {1, 2, 3, 0, 0, 0, 0, 0}.
Constant vector-values are defined in the same way as when initialising a

variable, but with an explicit type-cast. For example:

vec to r (4 , int ) a , b ;
a = b + ( vec to r (4 , int ) ){1 , 2 , 3 , 4} ;

Vector types can be used within a subset of normal C operations. Cur-
rently GCC allows using the following operations on vector types: +, -, *, /, %,
unary minus, >>, <<, ^, |, &, ~. All the binary operations perform an element-
wise operation on vector elements. For example:

vec to r (4 , int ) a , b , c ;
a = b + c ;

This code for each of the four elements of b will add the corresponding four
elements of c and store the result in a.

Assigning expression of vector types, it is allowed to use a short form of the
binary operation like +=, -=, etc. The semantics of the operation is going to be
the same as in scalar case. For example:

vec to r (4 , int ) a , b , c ;
a += b ; /∗ a = a + b ; ∗/
b <<= c ; /∗ b = b << c ; ∗/

Following the OpenCL conventions we also allow both scalar/vector and vec-
tor/scalar variants of binary expression. In that case the scalar is transformed
to the vector of corresponding type where all the elements are equal to the given
scalar. Consider the following example:

vec to r (4 , f loat ) a , b , c ;

a = b + 1 . ; /∗ a = b + {1 . , 1 . , 1 . , 1 .} ∗/
a = 1 . + b ; /∗ a = {1 . , 1 . , 1 . , 1 .} + b ∗/

Note that the transformation will happen only when the scalar can be safely
transformed to the vector type. For example, the following code would produce
an error, as converting long to int includes a truncation.

vec to r (4 , int ) a , b ;
long l ;

a = b + l ; /∗ Error , cannot conver t long to i n t . ∗/

When shifting is used on the vector types, we do not follow OpenCL in case
when right-hand side of the shifting expression is greater than log2 N . Following
the C standard of scalar shifting we leave this situation undefined. This is choice
was made deliberately to avoid runtime masking of the right-hand side.



Vectors can be indexed in the same way as if they were arrays with the same
number of elements and base-type. Out of bound access invoke undefined be-
haviour at runtime, however, the warnings can be enabled using -Warray-bounds.
Consider the following example:

vec to r (4 , int ) a = {1 , 2 , 3 , 4} ;
int sum = a [ 0 ] + a [ 1 ] + a [ 2 ] + a [ 3 ] ;

Vector comparison is supported within the standard comparison operators:
==, !=, <, <=, >, >=. Comparison operands can be either both integer type or
both real type. Comparisons between integer-type vectors and real-type vectors
are not supported. The result of vector comparison is a vector of the same width
and number of elements as the comparison operands with a signed integer base
type. Vectors are compared element-wise producing 0 when comparison is false
and -1 (constant of the appropriate type where all the bits are set) otherwise.
Consider the following example:

vec to r (4 , int ) a = {1 , 2 , 3 , 4} ;
v ec to r (4 , int ) b = {3 , 2 , 1 , 4} ;
v ec to r (4 , int ) c ;

c = a > b ; /∗ The r e s u l t would be {0 , 0 ,−1 , 0} ∗/
c = a == b ; /∗ The r e s u l t would be {0 ,−1 , 0,−1} ∗/

Vector shuffling is available using functions __builtin_shuffle (vec, mask)

and __builtin_shuffle (vec0, vec1, mask). Both functions construct a per-
mutation of elements from one or two vectors and return a vector of the same
type as the input vector(s). The mask is an integral vector with the same width
(W) and element count (N) as the output vector.

The elements of the input vectors are numbered in memory ordering of vec0
beginning at 0 and vec1 beginning at N. The elements of mask are considered
modulo N in the single-operand case and modulo 2 ∗N in the two-operand case.
Consider the following example:

vec to r (4 , int ) a = {1 , 2 , 3 , 4} ;
v ec to r (4 , int ) b = {5 , 6 , 7 , 8} ;
v ec to r (4 , int ) mask1 = {0 , 1 , 1 , 3} ;
v ec to r (4 , int ) mask2 = {0 , 4 , 2 , 5} ;
v ec to r (4 , int ) r e s ;

r e s = b u i l t i n s h u f f l e ( a , mask1 ) ; /∗ res i s {1 ,2 ,2 ,4} ∗/
r e s = b u i l t i n s h u f f l e ( a , b , mask2 ) ; /∗ res i s {1 ,5 ,3 ,6} ∗/

The contribution of this work is not only in the identification of the operation
set, but also in implementing most of the missing parts in GCC. Currently
version 4.7 will include all the missing features except whole vector-shifting.
Comparing vector and scalar arithmetic operations the following operations are
not available in vector mode: ++, --, !, &&, ||.

4 Case-study

In this section we will demonstrate a vectorised version of the running exam-
ple and evaluate performance. We are not going to make extensive performance



measurements, cause the figures mainly depend on the quality of a particular
code-generator. The main purpose is to demonstrate that using GCC vector ex-
tensions we can address complicated patterns producing a code which is portable
across all the platforms supported by the compiler and which can efficiently use
SIMD accelerators in case they are present.

In order to implement rotate_segment in a vectorised way we would load a
16-symbol chunk into a vector register, perform a permutation in-place and store
it back into the memory. All the chunks are potentially unaligned, so we mark
it in the same way as in rearrange_alphabet. The code looks as following:

const vec to r (16 , char ) perms [ 1 6 ] = {
( vec to r (16 , char ) ){0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15} ,
( vec to r (16 , char ) ){1 , 0 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15} ,
( vec to r (16 , char ) ){2 , 0 , 1 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15} ,
/∗ . . . ∗/

} ;

void rotate segment (char ∗v , int idx )
{

vec to r (16 , char ) t , vec ;

i f ( idx == 0)
return ;

t = ∗ unal igned (v ) ;
vec = b u i l t i n s h u f f l e ( t , perms [ idx ] ) ;
∗ unal igned (v ) = vec ;

}

As all the permutation masks are static, the compiler can perform an op-
timisation of each particular permutation. For example, it can replace the case
when idx is one with something like: swap (v[0], v[1]). Note that in OpenCL
framework permutation is a library function call and the above optimisation can-
not be achieved unless link time optimisation is used, in which case the library
must be compiled with special flags.

Consider Fig. 1 which shows how the vectorised and non-vectorised versions
of rotate segment and rearrange_alphabet impact performance of unMTF.
The base-line of the experiment is a fully scalar implementation. The best per-
formance improvement on both architectures we observe when rotate segment

is vectorised and rearrange_alphabet is not: we have about 20% and 30%
speed-ups on according architectures. We observe the negative impact from vec-
torising rearrange_alphabet. In order to explain this fact we have to realise
that unaligned move on Intel is expensive and it also creates additional pressure
on the memory. The operation itself happens quite rarely (once per length of the
alphabet-array) so the initialisation overheads are bigger than the performance
gain.

As another experiment we would like to include the newly implemented func-
tion in the box-standard implementation of BZIP2 in order to see the impact
of this function on the overall decompression process. As an input data we use
encoded 347MB video-file and as a measurement unix time command taking
user’s time. On Intel Core2 duo we observed 18% speed-up (36.6s vs 30.2s) but
on the Core i5, the run-time difference was in order of measurement error (26s
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Fig. 1. Vectorised and non-vectorised versions of unMTF measured in clock-cycles. All
the measurements were repeated 30 times sequentially using an output of a previous
run as an input for the next one. The first input is a file of 105 random characters.

both). As BZIP2 is a pipe-line we can see that the improvement of a single part
may not affect whole the process; hence unMTF is not a hot-spot on Core i5
processor. Identifying a new hot-spot of the algorithm requires an analysis which
is outside of the scope of this paper.

We have demonstrated how easily one can experiment with the potential
benefits of using SIMD extensions. Keep in mind that all the results on both
architectures were obtained from one and the same source code which would also
work on any architecture supported by GCC.

5 Related work

In this section we will make an overview of existing concepts and approaches
which allow to exploit SIMD extensions of a CPU.

5.1 Automatic vectorisation

Automatic vectorisation is an implicit way of recognizing loop patterns and
rewriting them using vector instructions during the optimisation cycle of a com-
piler. Most modern compilers like GCC, LLVM and Intel are equipped with
auto-vectorisers. Automatic vectorisation is a complicated and expensive pro-
cess, occupying about 25 000 lines of code in GCC; it has to consider data de-
pendencies of the loops, internals of the target architecture and use a cost-model
to determine whether it is reasonable to vectorise a given loop.

Automatic vectoriser does not require any effort form the side of a program-
mer, literally a programmer just compiles the code and the vcetoriser uses knowl-
edge and heuristics to do the job. However, the downside of the approach is lack
of chances to influence the decision of the vectoriser. The number of supported



patterns is always limited, and in the cases of non-trivial data-dependencies the
vectoriser would give-up. In order to get the best performance from an auto-
vectoriser in case of floating-point operations one have to specify flags that vi-
olate IEEE and ISO implementation of floating point. As an example we can
consider the case of horizontal sums:

f loat ∗array , r e s u l t ;

for ( i = 0 ; i < N; i++)
r e s u l t += array [ i ] ;

f loat ∗array , r e s u l t ;
f l o a t v e c reg ;

/∗ Assume N % 4 == 0 ∗/
for ( i = 0 ; i < N; i += 4)

reg += ∗( f l o a t v e c ∗)&array [ i ] ;

r e s u l t = reg [ 0 ] + reg [ 1 ]
+ reg [ 2 ] + reg [ 3 ] ;

According to IEEE floating point standard the order of operations can change
the result; hence the above optimisation is illegal. In order to legalise it in GCC
one needs to specify -ffast-math flag when compiling and it is impossible to use
it on a given loop only. It means that in order to make auto-vectoriser perform
the optimisation, a programmer has to switch a flag potentially violating all the
floating-point operations.

The auto-vectoriser cannot properly handle the loops with the control-flow
or uncountable loops, e.g. while (*x != NULL).

5.2 Virtual Instruction Set

R.Bocchino et al in [1] address the problem of portability of SIMD instructions
by introducing a virtual instruction set specially designed for vector operations.
The main design criteria is to provide an abstraction for various vector archi-
tectures and architecture classes. Architecture classes include sub-word SIMD
like Intel SSE and PowerPC Altivec and streaming processors like RSVP. The
Low Level Instruction Set (LLVA) allow both arbitrary length and fixed vectors
providing asynchronous load and store semantics for long vectors and introduc-
ing alignment attributes. The compilation scheme involves a compiler which can
generate a portable vector code and a translator with full information about the
target architecture and system configuration.

The LLVA approach provides a portable standard for SIMD operations. How-
ever, this approach raises several practical and theoretical questions. Practically,
the architecture exists only as a prototype with implemented translator for sev-
eral ISA-s. It means that in order to integrate LLVA in any existing compiler,
we will have to provide a translation from the IL of a compiler to the LLVA.
Assuming that we did that, we will have to implement the translators for all
the targets we want to support. Keep in mind that LLVA provides instructions
only for vector operations, it means that all the non-vector operations has to be
integrated into the representation as well. Assuming that we did that as well, we
come to the point when we will have to instruct our auto-vectoriser and possibly



other optimisations to generate the code using LLVA. How can we estimate the
cost of the operation, if we don’t know the target architecture?

As several architecture classes are supported within the LLVA, and there are
mechanisms, allowing careful tuning for each processor class, how efficient would
it be to run an LLVA code tuned for class A on class B?

5.3 OpenCL

In terms of portability our approach is very similar to OpenCL and we even
borrow the syntax of SIMD operations, however, there is a number of important
distinctions. The main purpose of Open Computing Language (OpenCL) is to
provide a unified framework which supports heterogeneous architectures. The
main stress is a combination of CPUs and GPUs. OpenCL provides a C99-
based language for programming kernels and set of APIs for controlling the
host. OpenCL supports both data-based and task-based parallel programming
models. Amongst the other APIs, OpenCL provides an abstraction for SIMD
operations.

Obviously the intention of OpenCL is very different from ours. OpenCL op-
erates with a large-scale problem and tries to include in the framework as much
instruments as possible; where our approach solves a single issue. The OpenCL
C programming language is based on ISO/IEC 9899:1999 C language standard
(a.k.a C99) [7], but it also introduce a number of restrictions. Most importantly,
OpenCL tries to cover all the undefined or ambiguous cases of C99 standard.
For example, basic types, like int, char and long get a fixed size; C99 in this
cases fixes only the relation of the type-sizes i.e char ≤ int ≤ long. Defining
bit-shift operations e1 << e2, OpenCL states that only lower log2 N bits of e2
will be used during the operation; C99 in this case states that if e2 > log2N ,
the result is undefined.

Arguably the restrictions of OpenCL increase the portability of programs
but at the same time they remove backward-compatibility with ANSI C code.
Practically it means that the existing C code may not work within the OpenCL
compiler.

Technically OpenCL provides a set of libraries and header files, but the actual
compilation is done by a C compiler of users choice. This is a key difference from
the approach we are taking, as we implement SIMD operations as an integral
part of the C language; hence as a part of the compiler. Decoupling a framework
from the compiler gives you a freedom when you choose a compiler, but in terms
of SIMD operations we see the following problems with this approach:

1. In order to define a SIMD vector OpenCL provides typen construction,
where n can be 2,3,4,8 or 16 and the type is a basic scalar type, e.g. char,
int, float, etc. As far as there is no way to override selection operator []

in C, OpenCL introduces a new scheme for enumerating vector components
introducing notion of lo, hi components x, y, z, w, etc. The vector type
is mapped to the hardware-specific SIMD vector type or static array in case
SIMD accelerators are not present within the architecture. Such a design



makes it rather complicated to support vectors of arbitrary length, as each
typen is defined as a new structure and chosen indexing scheme leads to the
combinatorial explosion. Also, each time when the length of vector register
doubles, the standard correction is required. For example, currently, it is
impossible to define a char32 type, however, it is supported by Intel AVX.
Our approach allows to define a vector of arbitrary length, where the length
is a power of two. To index elements we use a standard selection [] operator
and during the compilation vector operations are compiled to the longest
vectors supported by the architecture.

2. Basic vector operations like arithmetic, comparison, shuffling are whether
aliases to the intrinsic functions or external functions defined in the library.
From the performance point of view both cases are harmful as they decrease a
chance for optimisations. Library function call prohibits even from the simple
constant propagation; intrinsic functions normally do not participate in the
optimisation cycle. If vector operations would be inlined, the compiler can
generate a better code with respect to the pipelining and register pressure.

3. OpenCL SDKs are mainly closed-source products which are released for
the combination of hardware architecture and operating system. It means
that there is a chance that all these products perform slightly different. Our
approach does not solve this problem fully, as code-generators are unique for
every hardware architecture as well, however, the most of the optimisations
happen in the middle-end. Also, the fact that GCC compiler is an open-
sourced product gives a better chance to identify the reason of the undesired
behaviour.

6 Conclusions

In this work we have demonstrated a framework which allows to encode explicit
vector computations in a portable fashion. The framework is implemented as
a set of C language extensions within the GCC compiler preserving backward
compatibility with ANSI C standards. This approach is beneficial because of the
following reasons:

1. A programmer or a compiler which uses C as a target language gets a chance
to express vector computations of any complexity at the level of C without
involving any additional libraries or frameworks and not taking care about
the specifics of any particular architecture, but being sure that the vec-
tor code would be executed within the SIMD accelerators in case they are
present.

2. Backward compatibility makes it easy to change an existing software by
rewriting a certain function or code region using vector types and operators.

3. Internal representation of vector operations is shared with the auto-vectoriser
which means that any architecture that supports auto-vectorisation supports
explicit vectorisation and vice-versa and any improvement affects both parts
of the compiler.



4. Vector operations within the GCC are fully-fledged members of the flow-
graph; hence they participate in the optimisation cycle similarly to the scalar
operations.

The downsides of the proposed approach are the following:

1. Currently the framework is supported only within the GCC compiler, which
means that one will have difficulties in case of moving code-base to the dif-
ferent compiler. One of the solutions to this problem is to make the language
extensions fit into a new C language standard, but unfortunately this is a
long and complicated process.

2. The price for the abstraction layer is a potential inability to use the newest
SIMD instructions. There is always a gap in time between the architecture
becoming available on the market and the code generator being able to use
it correctly. There is no good solution here, however the good thing is that
a programmer cannot and doesn’t have to do much about it. Whenever a
given pattern would be incorporated in a code-generator, the code should
start to work faster automatically.

7 Future Work

In the near term we aim to implement a support for the missing operations
available in a scalar mode, but not available in a vector mode. These operations
are: ++, --, &&, ||, !. After that it is necessary to make more careful research with
respect to the common SIMD patterns supported by various architectures and
provide according C constructions. For example, currently there are no facilities
to use horizontal vector instructions like sum or min/max of the entire elements.

Another important issue that we aim to address is vector alignment. Some
ISAs have different instructions to load/store vectors from aligned and unaligned
memory. Normally unaligned variant of the instruction is less efficient. Currently
in C we cannot annotate a chunk of memory being aligned/unaligned; hence gen-
erate an efficient load/store instruction. In auto-vectorisers the similar problem
is partially solved [4,11] by transforming the computation. As we are in explicit
mode, our goal is to provide annotations and mechanisms to emit a suitable
instruction. As C arrays and pointers are the same in its declaration, aligned
attribute does not give the desired effect, as applied on a pointer it means that
the pointer is aligned (not the memory where it is pointing). In case attribute
is applied to a type then in case of an array it means that each element of
the array becomes aligned which is not true. A solution here is to introduce a
new attribute for aligning a chunk of memory. After that pointer dereferences
and pointer-arithmetics must be analysed in order to see if the alignment gets
changed. Unfortunately in general case such an analysis is impossible as vari-
ables and functions can be external. However, we hope to address this problem
by including the analysis in the Link Time Optimisation (LTO) cycle when all
the information is statically available.



In the long term we hope to include describe extensions into a new C language
standard. That would give a chance to use various compilers for one and the
same code. It seems that it is already too late to apply for C1X standard, but
the upcoming one could be just the right time.
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