Making Fortran Legacy Code More Functional

Using the BGS™ Geomagnetic Field Modelling System as an Example

Hans-Nikolai VieBmann
Heriot-Watt University
hvi5@hw.ac.uk

Brian Bainbridge
British Geological Survey

bba@bgs.ac.uk

ABSTRACT

This paper presents an application case study of the British Geo-
logical Survey’s (BGS) Geomagnetic Field Modelling System code.
The program consists of roughly 20 000 lines of highly-tuned FOR-
TRAN MPI code that has a runtime of about 12 hours for a signal
execution cycle on a cluster utilising approximately 100 CPU cores.
The program contains a sequential bottleneck that executes on a
single node of the cluster and takes up to 50% of the overall runtime.
We describe an experiment in which we rewrote the bottleneck FOR-
TRAN code in SAC, to make use of auto-parallelisation provided
by the SAC compiler. The paper also presents an implementation
of a foreign-function interface, to link the SAC kemel with the
FORTRAN application. Our initial performance measurements com-
pare the SAC kernel performance with the FORTRAN bottleneck
code; we also present results using an OPENMP Fortran imple-
mentation. Our figures show that the SAC-based implementation
achieves roughly a 12.5% runtime improvement, and outperforms
the OPENMP implementation.

CCS Concepts

*Applied computing — Environmental sciences; Mathematics and
statistics; *Computing methodologies — Parallel programming
languages; *Software and its engineering — General program-
ming languages; Compilers; *Computer systems organization —
Single instruction, multiple data; Multicore architectures;

Keywords

Fortran; Single-Assignment C; High-Performance Computing; Func-
tional Programming; Eigensystem; Foreign Function Interface;

*British Geological Survey — is the world’s oldest geological sur-
vey. A member of the United Kingdom’s public funding body, the
Natural Environment Research Council, the BGS is the custodian
of much of the country’s geoscientific information as well as a
source of geoscience expertise. More information can be found at
www.bgs.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise. or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

IFL 15, September 14-16, 2015, Koblenz, Germany
© 2015 ACM. ISBN 978-1-4503-4273-5/15/09...$15.00
DO http://dx.dot.org/10.1145/2897336.2897348

Sven-Bodo Scholz
Heriot-Watt University
s.scholz@hw.ac.uk

Brian Hamilton
British Geological Survey

bham@bgs.ac.uk

Artjoms Sinkarovs
Heriot-Watt University
a.sinkarovs@hw.ac.uk

Simon Flower
British Geological Survey
smf@bgs.ac.uk

1. INTRODUCTION

The lambda calculus’ Church-Rosser property suggests that func-
tional programming languages should offer opportunities for effi-
cient parallel execution. Research over the last four decades has
produced excellent results that demonstrate how this conceptual
advantage can be turned into real speedups on parallel hardware
[33]]. Despite these advances, functional programming
has not yet made it into mainstream high-performance computing
(HPC).

There are many reasons for this, but the key issue is that the
HPC industry has invested heavily into imperative programming lan-
guages, such as legacy FORTRAN codes. In particular, FORTRAN has
many features that make it the language of choice for performance-
hungry applications. It has long been available, and its design is
amenable to compiler optimisation. Most programs consist of pro-
cedures containing nested loop constructs that iterate over arrays.
The use of FORTRAN for HPC applications and the design of the
language, consequently, has driven research into advanced compiler
optimisations which, in turn, has further improved the performance
of generated code. Alongside the continuous improvement of FOR-
TRAN compilers, hand-tuning of these imperative applications has
given them highly competitive levels of performance. Given this
scenario, it is not very surprising that other programming languages,
including those from the functional domain, struggle to take hold in
the HPC domain.

FORTRAN’s limitations with respect to auto-parallelisation in-
spired the development of HPF (High-Performance FORTRAN),
were alleviated by the manual adaptation of codes with explicit
parallelism, using MPI, OPENMP, or both.

Several prominent examples show that compiler-generated codes
generated from highly specialised, typically functional, domain-
specific languages (DSLs), can outperform legacy codes, in both
parallel and sequential settings. Examples of this approach are the
Spiral project for signal processing and the Diderot project
for image processing. While this is an indicator for the validity of the
initial claim, i.e. the conceptual advantages of the functional setting
for parallel executions, it only covers a few rather specific applica-
tion areas. Furthermore, a DSL-based approach typically requires
re-writing large parts of legacy code, if not entire applications.

In this paper, we investigate a different approach towards improv-
ing legacy FORTRAN HPC applications. Starting from a parallel,
commercial FORTRAN code base we identify its sequential bot-
tleneck, re-implement this bottleneck code in SAC and call the
compiled SAC code from the FORTRAN context. The most impor-
tant aspect of this approach is that it is applicable to a wide range of
existing FORTRAN applications, without requiring either costly re-

