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We explore a data structure that generalises rectangular multi-dimensional arrays. The shape of an
n-dimensional array is typically given by a tuple of n natural numbers. Each element in that tuple
defines the length of the corresponding axis. If we treat this tuple as an array, the shape of that array is
described by the single natural number n. A natural number itself can be also treated as an array with
the shape described by the natural number 1 (or the element of any singleton set). This observation
gives rise to the hierarchy of array types where the shape of an array of level l +1 is a level-l array of
natural numbers. Such a hierarchy occurs naturally when treating arrays as containers, which makes
it possible to define both rank- and level-polymorphic operations. The former can be found in most
array languages, whereas the latter gives rise to partial selections on a large set of hyperplanes, which
is often useful in practice. In this paper we present an Agda formalisation of arrays with levels. We
show that the proposed formalism supports standard rank-polymorphic array operations, while type
system gives static guarantees that indexing is within bounds. We generalise the notion of ranked
operator so that it becomes applicable on arrays of arbitrary levels and we show why this may be
useful in practice.

1 Introduction

A large number of high-performance numerical problems use multi-dimensional arrays (often referred as
tensors) as a key data structure. On the one hand, the multi-dimensional array is a natural abstraction of a
space with a regular structure; on the other hand, computations on arrays can be efficiently implemented
on conventional computing architectures.

In functional programming, arrays typically do not get a lot of attention, as most of computations
on arrays can be expressed as computations on nested lists or vectors, both of which are simpler data
structures. While the latter is true, nested vectors miss a very essential feature of many array languages —
rank polymorphism. This is the ability to define operations on arrays of arbitrarily many dimensions.

The tradition of rank-polymorphic programming starts from APL [9] and is picked-up by a number
of descendants such as J [14], K [16], FISH [10] and others. Rank-polymorphic array programming has
found its way into functional langauges as well. For example, SaC [11], Remora [13], Qube [15] are
all array-based languages supporting rank-polymorphism. However, enforcing static safety guarantees
such as lack of out-of-bound indexing turns out to be a very challenging problem. None of the functional
languages above are capable of enforcing such guarantees for the full range of APL operators. The reason
for this is that a number of these operators introduce a dependency between the value of the input and
the shape of the output. For example, the take operator selects a subarray from the given array, and the
shape of the subarray comes as an argument. Therefore, a rank-polymorphic language of APL’s expressive
power which guarantees correct indexing has to support dependent types. Most of practical languages
find such a constraint too harsh, due mainly to the fact that one has to give-up global type inference.
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Consequently, these languages make compromises, either with the range of supported primitives, or with
type safety.

When designing a type system for a rank-polymorphic array language the notion of containers [3]
comes in very handy. An arrays can be thought of as a tabulated index-value functions, where the set of
valid indices into the array is defined by the array shape — exactly the abstraction that containers are
designed to handle.

While formalising rectangular multi-dimensional arrays using containers (see Section 2.1), we discov-
ered a new container operation that gives rise to the desired structure:

(ACB)�(CCD) = JACBKCC C λ (a,s)→∏B a D◦ s (1)

Using this operation, we can define a multi-dimensional array with elements of type X as:

Array X = J(NCFin)� (NCFin)KC X (2)

We explain the derivation of the operation, and the array structure in Section 2.
As � is a general container operation, we notice that −� (NCFin) can be iterated. By doing so, we

get a hierarchy of array types that to our knowledge have not been studied before. Intuitively they can
be described as follows. The container NCFin describes a finite vector, the shape of which is given by
a natural number n. The indices into this vector are natural numbers that are less than n. We call these
objects level-1 arrays. If we apply −� (NCFin) to a level-1 array we get level-2 arrays. The shape of
such a thing is a vector of natural numbers, and the indices are vectors of natural numbers of the same
size as the shape, where each element is less than the corresponding element in the shape vector. At the
next application, level-3 arrays have shapes that are described by level-2 arrays of natural numbers, and
level-3 indices are level-2 arrays of natural numbers, where each element is less than the corresponding
element in the shape. And so on.

Beyond simple curiosity, it turns out that these higher-level arrays can be useful in practice. To
understand why this is the case, consider the following intuition. The main advantage of multi-dimensional
arrays is the availability of proximity metrics for a given element. Within a vector, we can refer only to the
left and right neighbours of a cell, whereas within an n-dimensional array we can refer to 2n neighbours.
Within a multi-level arrays, it is possible to do exactly the same at the level of shapes. The shapes of
level-2 arrays are always vectors, therefore one can only talk about left and right shape neighbours. With
level-n arrays we can talk about 2n shape neighbours, applying all the arsenal of multi-dimensional array
operations at the level of shapes. This additional information in the shape makes it possible to define a
new class of generic array operations that reshuffle array elements or perform non-trivial partial selections,
both of which lie at the very core of array programming.

The paper is a literate Agda script. The contributions are as follows:

• Description of novel data structures that generalise multi-dimensional arrays;

• Formal definition of the data structure and the standard array operations in Agda (available at [12]);

• Generalisation of rank-polymorphic array operations to level-polymorphism, and demonstration of
the benefits in practice.

2 Arrays as Containers

In this section we briefly introduce container types and explain how we derived the previously mentioned
� operation.
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2.1 Containers

Containers can be seen as a conceptual tool to describe “collections of things” such as lists or trees in a
uniform way. Mathematically, containers are endofunctors on a category of types, that are coproducts of
type-indexed families of representable functors.

We define containers by a type of shapes Sh and an Sh-indexed type family Po. The interpretation
(sometimes called extension) of a container type is a dependent pair type where the first element is the
shape of type Sh, and the second element is a function from positions of that shape to the element type.
Following Conor McBride’s syntax, we specify containers in Agda as follows1:

record Con : Set1 where
constructor _C_
field
Sh : Set
Po : Sh→ Set

J_KC : Set→ Set
J_KC X = Σ Sh λ s→ Po s→ X

To develop an intuition, consider lists of Xs, expressed as a container.

List X = J N C Fin KC X -- ≡ Σ N λ n → Fin n → X

For any given length n, the data of the list is modeled by a function of type Fin n → X. While the type
does not carry the length as an argument, each item of the list container type carries the length in the first
element of the dependent pair.

Consider binary trees defined as containers.

data Tr : Set where
Empty : Tr
Node : Tr→ Tr→ Tr

data Tx : Tr→ Set where
Done : ∀ {l r}→ Tx (Node l r)
R_ : ∀ {l r}→ Tx r→ Tx (Node l r)
L_ : ∀ {l r}→ Tx l→ Tx (Node l r)

Tree X = J Tr C Tx KC X

The shape of the tree is given by a tree that does not store any data in its nodes. Positions into this tree are
all the valid paths leading from the root to some node in the shape tree.

For further details on numerous container properties refer to [3, 1, 4, 2].

2.2 Rectangular Arrays

Now let us explore how containers can be used to define rectangular multi-dimensional arrays. The shape
of a d-dimensional rectangular array can be represented as a d-element tuple of natural numbers. For a

1For presentational purposes we avoid level polymorphism and force shapes to be elements of Set. A level-polymorphic
version of containers can be found in Agda’s standard library.



4 Multi-dimensional Arrays with Levels

tuple (s1, . . . ,sd), every value si represents the number of elements over the axis i in the array with that
shape. All the array elements are of type X :

Array X = ∏d : N∏s : Fin d→ N

((
∏i : Fin d Fin (s i)

)
→ X

)
where d is the number of dimensions, s is a d-element tuple of N that we model as a function, and the
content of the array is a function from indices to values of type X . Indices are d-element tuples of natural
numbers where every i-th element is bound by the corresponding position in the shape vector s i.

Properties The type of indices ensures that out-of-bound access is not possible. Arrays with empty
shapes inhabit the Array type as there exists a function from Fin 0 (empty set) to N. Arrays of this kind
are often called scalars.

s : Fin 0→ N ∏i : Fin 0 Fin (s i)∼=> X ∼= Array X 0 s ( f :>→ X)

Most array processing languages treat scalars as degenerate (0-dimensional) arrays.
By similar reasoning, the Array type allows an infinite number of empty arrays (arrays with no

elements). An empty array can be characterised by a shape function that evaluates to zero at one of its
inputs. (There are no indices permitted in that dimension.)

∃(i : Fin d) s i = 0 =⇒ ∏i : Fin d Fin (s i)∼=⊥

Empty arrays do not contain any elements, but they do exist, due to existence of a function of type ⊥→ X ,
whatever the type X . Empty arrays are often found useful in practice, for example as neutral elements for
array concatenations.

2.3 The � Operation

Let us find a container formulation for the Array type. To do so, we uncurry the first two arguments d and
s as follows:

Array X =
r(

∑d : NFin d→ N
)
Cλ (d,s)→∏i : Fin d Fin (s i)

z

C
X

We can notice that the first sigma can be represented as a container as well:

∑d : NFin d→ N= JNCFinKCN

Using this observation let us generalise Array as a result of the following container operation:

(ACB)� (CCD) = JACBKCCCλ (a,s)→∏B a D◦ s

Using � we describe homogeneous rectangular arrays as:

Array X = J(NCFin)� (NCFin)KC X
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Discussion One may think about the � operation as of a generalisation of the container operation that is
often referred as Hancock’s tensor. The tensor operation on containers is defined as:

(ACB)⊗ (CCD) = (A×C)Cλ (a,c)→ B a×D c

If we want to compute an n-fold tensor product of the container CCD:

(CCD)⊗ (CCD)⊗ (CCD)⊗·· ·

we need to specify the boundaries of the product. Instead of giving a number, we can use another container,
and use its index-space to encode the count. One might write:

(ACB)� (CCD) =
⊗

JACBKC (CCD)

We “set the bounds” of the iterated tensor product using a “count container” ACB. This gives us a family
of containers (a : A, f : B a→ (CCD)) and we compute tensor product of all the elements produced by f .

Further, we notice the following analogy. Similarly to the way ⊗ replaces2 + with × in the container
coproduct:

(ACB)+(CCD) = (A+C)C (B+D)

(ACB)⊗ (CCD) = (A×C)C (B×D)

in the same way � replaces ∑ with ∏ in the container composition:

(ACB)◦ (CCD) = JACBKCCCλ (a,γ)→∑B a D◦ γ

(ACB)� (CCD) = JACBKCCCλ (a,γ)→∏B a D◦ γ

Iteration Let us now explore iterated applications of −� (NCFin) and (NCFin) �− treating � first as
a as left-associative and then as a right-associative operation.

((NCFin)� (NCFin))� (NCFin) =

(
JNCFinKCNCλ (d,s)→ ∏

Fin d
(Fin◦ s)

)
� (NCFin)

=

t

JNCFinKCNCλ (d,s)→ ∏
Fin d

(Fin◦ s)

|

C

N

Cλ ((d,s),v)→∏∏Fin d(Fin◦ s)(Fin◦ v)

In this left-associative case we see that we obtain a generalisation of multi-dimensional arrays which
we call level-3 arrays. The shape of a level-2 array is given by a pair (d,s), where d is the dimensionality
and s is the shape. The indices into level-2 arrays are vectors of Fin-s of the same length as s. The shape
of a level-3 array is a level-2 array v of N. The indices into such an array are level-2 arrays of Fin-s with
the same shape as v. We can get even higher levels by further application of −� (NCFin).

2We have overloaded + and × for B and D.
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When � is right-associative, i.e. we successively apply (NCFin) �− (on the left) we get:

(NCFin)� ((NCFin)� (NCFin)) = (NCFin)�

(
JNCFinKCNCλ (d,s)→ ∏

Fin d
(Fin◦ s)

)
= JNCFinKC

(
JNCFinKCN

)
Cλ (m, f )→ ∏

Fin m

(
λ (n,s)→ ∏

Fin n
Fin◦ s

)
◦ f

Note that this is well-formed because:

f : Fin m→∑
n:N

(Fin n→ N)

The shape of such an array is a vector of vectors of N. The shape is a 2-dimensional array, but it does not
have a rectangular structure, as its rows could be of different lengths. The array itself still has a rectangular
structure and is indexed by the Fin x “tuples” where x iterates over the elements of the shape. For example,

we may create a shape
(

3
4 5

)
that is encoded with the type ∑m (Fin m→ ∑n (Fin n→ N)) where

m = 2 and the corresponding two sigmas are (1,λ _→ 3) and (2,λ {0→ 4;1→ 5}). The array itself
would be isomorphic to the 3-d array of shape 3×4×5. Further applications of (NCFin) �− (on the left)
will turn shapes into 3-d irregular arrays, as it simply generates a vector of the shapes from the previous
level.

This difference is somewhat natural if we recall the explanation of the � operation via “count containers”
and tensor product. Left application of � acts on the original “count container” enriching its structure.
The right application turns the structure obtained at the level l into the count container for the level l +1.

3 Array Levels

With the � operation in hand, we can define a hierarchy of arrays with levels in the following way.

_�_ : Con→ Con→ Con
(S C P) � (S1 C P1) = J S C P KC S1 C λ { (s , γ)→ (s1 : P s)→ P1 (γ s1) }

A : N→ Con
A zero = > C λ _→>
A (suc x) = (A x) � (N C Fin)

JA nKC is a level-n array. Our iteration begins with level-0 arrays, where all the shapes are singletons.
Level-0 arrays are often referred to as scalars in array calculi. Even though JA 0KC X is isomorphic to X ,
it still makes sense to have both: a level-polymorphic array operation is applicable to scalars and is not
applicable to X .

Unfortunately, this data structure is not very convenient for observing shape relations in array opera-
tions. Consider a regular cons operator on a level-1 array.

cons : ∀ {X}→ X→ J A 1 KC X→ J A 1 KC X
cons {X} x ((_ , s) , p) = (tt , suc ◦ s) , ix-val where
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ix-val : ((x : >)→ Fin (suc (s x)))→ X
ix-val iv with iv tt
... | zero = x
... | (suc j) = p λ _→ j

We would like to observe from the type signature that the resulting array is one element longer than the
input. We can surely encode this information as follows:

cons+inv : ∀ {X}→ X→ (v : J A 1 KC X)
→ Σ (J A 1 KC X)

λ r→ proj (proj1 r) tt ≡ 1 + proj (proj1 v) tt
cons+inv x s = cons x s , refl

However, as this is a frequent case, we find it more natural to break the structure of the container apart,
and lift the shape information into the type. We end up with the following array type.

data Ar {a} (l : N) (X : Set a) (s : Sh (A l)) : Set a where
imap : (Po (A l) s→ X)→ Ar l X s

Note that instead of fixing A in Ar, we can have a generic definition:

data TC {C : Con}{a} (X : Set a) (s : Sh C) : Set a where
imap : (Po C s→ X)→ TC X s

in which case Ar l X s would be defined as TC {C = A l} X s. In some sense C and TC (or A and
Ar) are related in a similar way as List and Vec. We lift a commonly used invariant (shape in case of
containers and length in case of lists) into a type-level argument.

With the help of Ar we can express cons as:

cons-ar : ∀ {X s}→ X→ Ar 1 X (_ , s)→ Ar 1 X (_ , suc ◦ s)

Also, such a formulation naturally gives rise to the imap construct that is a basic building block of the SaC
programming language. In SaC arrays are treated as tabulated index-value functions. The imap construct
can be thought of as an abstract tag that indicates that a chosen function has to be eventually tabulated.
However, the exact details on how this function is to be tabulated are not specified. As a result, when
producing an executable for the given program, a compiler has a lot of freedom to choose storage formats
for arrays, based on the information that is being accumulated during optimisation phases.

The two data structures are isomorphic, which is indicated by the following conversion functions

c→ar : ∀ {n X}→ (c : J A n KC X)→ Ar n X (proj1 c)
c→ar c = imap (proj c)

ar→c : ∀ {n X s}→ Ar n X s→ J A n KC X
ar→c {s = s} (imap x) = s , x

Finally, if we consider imap as an array constructor, there has to be an eliminator. The eliminator for
the array is a selection operation, and our model, this is simply a function application.

sel : ∀ {a}{X : Set a}{n s}→ Ar n X s→ Po (A n) s→ X
sel (imap x) iv = x iv
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3.1 Lack of Extensionality

While the above model gives us all the fundamental array primitives, it has a serious flaw when we come
to reasoning about array equalities. One of the fundamental assumptions in array calculi is that the same
indices select the same values. Indices of level-n arrays, where n > 0 are functions, and therefore we define
index equality extensionally. It should not matter how exactly the elements within the index are computed,
as long as two indices are element-wise equal, they should select the same element. Unfortunately, in
Agda this cannot be shown. The code below demonstrates the problem.

po-eq : ∀ {l s}→ (iv jv : Po (A l) s)→ Set
po-eq {zero} iv jv = iv ≡ jv
po-eq {suc l} iv jv = ∀ i→ iv i ≡ jv i

sel-eq : ∀ {a}{X : Set a}{l s}
→ (a : Ar l X s)
→ (iv jv : Po (A l) s)
→ po-eq {l = l} iv jv
→ sel a iv ≡ sel a jv

Recall that even at the first level the indices have a type > → Fin (s tt):

sanity : ∀ s→ Po (A 1) (_ , s) ≡ (>→ Fin (s tt))
sanity s = refl

Without the sel-eq property we cannot show very fundamental array facts such as element preserva-
tion under flattening/unflattening, reshaping, transposition, etc. This problem can be worked around in
a number of ways including defining custom equality relation and working in setoids, defining custom
selection operation or using cubical Agda. In this paper we introduces a non-functional representation for
indices so that the sel-eq becomes provable. The details are described in the next sections.

4 Alternative Encoding

The main idea here is to define an alternative representation for A from the previous section that makes it
possible to prove that indices with the same components select the same array elements. We achieve this
by using a non-function based representation for shapes and indices, while still representing contents of
arrays as imap-tagged index-value functions.

We start with an alternative definition for Fin in a refinement type [7, 8] style. While this is not strictly
necessary, it helps to simplify a number of proofs later. The main difference from the regular Fin is that
we keep the actual value of an index as an element of type N, and make irrelevant (in Agda sense) the
proof that this value is less than the chosen upper bound. Note the dot in the v<u field name.

record BFin (u : N) : Set where
constructor _bounded_
field
v : N
.v<u : v < u
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As we are defining an array and its representation at the same time, and we make these definitions
interdependent, we sometimes have to provide types first and only later provide the actual definition. We
start with leveled types for shapes, indices and array representations.

ShType : (l : N)→ Set
IxType : (l : N)→ ShType l→ Set
ReprAr : (l : N)→ (X : Set)→ Set

Note that for simplicity we do not impose any requirements on the validity of array representation. We
can define these properties later extrinsically.

As will be seen later, IxType may have the same representation for indices into arrays of different
shapes. To avoid this we define the Ix type that wraps IxType and carries array shape as a type parameter.

record Ix (l : N) (s : ShType l) : Set where
constructor ix
field
flat-ix : IxType l s

As a result, we will not be able to index an array of shape s with an index bound by shape s1 without
explicit cast. In the same way as one cannot pass the term of type Fin 10 to the function Fin 15 → X.

As before, arrays are tabulated index-value functions where imap is a constructor.

data Ar {a} (l : N) (X : Set) (s : ShType l) : Set a where
imap : (Ix l s→ X)→ Ar l X s

Our array representation needs the information on how many elements does the array contain, which is
just a product of the shape elements. Again, we cannot yet provide the body of the function, as we have
not yet defined how we represent shapes.

prod : ∀ {l}→ ShType l→ N

Finally, we get to the definition of the shape representation, which we chose to be the unit type for
level-0 arrays and ReprAr otherwise. While the latter is not strictly necessary, it gives us a nice symmetry
between the arrays and their shapes.

ShType zero = >
ShType (suc l) = ReprAr l N

Our array representation is a dependent pair where the first element is the representation of the shape,
and the second element is a linearisation of array elements — a vector that has as many elements as an
array of the given shape.

ReprAr l X = Σ (ShType l) λ s→ Vec X (prod {l = l} s)

As before, indices into an array of shape s have the same structure as s, except each valid index is
component-wise less than s. As ShType keeps shape elements in a linearised form, the index type mimics
the structure of the shape:

infixr 5 _::_
data FlatIx : (d : N)→ (s : Vec N d)→ Set where
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[] : FlatIx 0 []
_::_ : ∀ {d s x}→ BFin x→ (ix : FlatIx d s)→ FlatIx (suc d) (x :: s)

That is, a linearised shape is given by a vector of d elements, therefore an index contains BFin elements
where the upper bounds refer to the corresponding elements of the linearised shape.

The only valid index type for level-0 shapes is a singleton type, for which we use the unit type, and
for higher level arrays we use FlatIx.

IxType zero tt = >
IxType (suc l) (s , v) = FlatIx (prod s) v

The product is a fold of multiplication with the neutral element 1.

flat-prod : ∀ {n}→ Vec N n→ N

flat-prod = foldr _ _*_ 1

prod {zero} sh = 1
prod {suc l} (s , v) = flat-prod v

4.1 Examples

In order to develop a better intuition of the above data structures, let us define a few simple examples. We
start with defining some arrays of levels zero, one and two.

sca : Ar 0 N tt -- A scalar
vec : Ar 1 N (tt , 5 :: []) -- Vector of 5 elements
mat : Ar 2 N ((tt , 2 :: []) , 2 :: 2 :: []) -- Matrix of 2×2 elements

Let us now define the values.

sca = imap λ _→ 42
vec = imap λ {(ix (0 bounded _ :: []))→ 42 ; _→ 0}
mat = imap λ {(ix (1 bounded _ :: 1 bounded _ :: []))→ 42 ; _→ 0}

We defined a scalar with a value 42; a vector of 5 elements with the value 42 at the index zero and value 0
elsewhere; a matrix with the value 42 at index [1,1] and zeroes elsewhere.

For a more realistic example consider a level-polymorphic array addition.

plus : ∀ {l s}→ Ar l N s→ Ar l N s→ Ar l N s
plus (imap a) (imap b) = imap λ iv→ a iv + b iv

Generally speaking, any element-level function can be lifted to the level of arrays: Ar with a fixed level
and shape is a functor. As another realistic example consider matrix multiplication. We formulate it in
a way so that it operates on 2-dimensional arrays of any size, given that the outer dimension of the first
matrix is identical to the inner dimension of the second one.

matmul : ∀ {m n p}→ let Sh x y = ((_ , 2 :: []) , x :: y :: []) in
Ar 2 N $ Sh m p→ Ar 2 N $ Sh p n→ Ar 2 N $ Sh m n
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matmul {p = p} (imap a) (imap b) = imap mat-content
where mat-content : _

mat-content (ix (i :: j :: [])) = let
t : Ar 1 N (_ , p :: [])
t = imap λ {(ix (k :: []))→ a (ix $ i :: k :: []) * b (ix $ k :: j :: [])}
in sum t

5 Practical Applications

Most of the typical array-based problems use arrays up to level two. Therefore, it is reasonable to ask
whether there are any applications where availability of higher levels is handy. As a motivating example,
we consider an instance of the average pooling problem [6] that is commonly used in machine learning
applications. Given a matrix of size (2m)×(2n) we produce an m×n matrix by averaging 2×2 subarrays,
for example:

avgp
(

1 2 5 6
3 4 7 8

)
=
(
(1+2+3+4)/4 (5+6+7+8)/4

)
A 2×4 matrix is turned into a 1×2 one where all the 2×2 subarrays are averaged.
Even though it is straight-forward to implement this function directly:

avgp-direct : ∀ {m n}→ Ar 2 N ((tt , 2 :: []) , m * 2 :: n * 2 :: [])
→ Ar 2 N ((tt , 2 :: []) , m :: n :: [])

avgp-direct {m}{n} (imap a) = imap array-content
where array-content : _

array-content (ix (i bounded _ :: j bounded _ :: [])) = let
t : Ar 2 N ((tt , 2 :: []) , 2 :: 2 :: [])
t = imap λ { (ix (i’ bounded _ :: j’ bounded _ :: []))→

a (ix $ (i + i’) bounded i+i’<m*2 :: (j + j’) bounded j+j’<n*2 :: []) }
in sum t / 4

we had to manually perform index manipulations and needed to prove two theorems. What if we try
to implement the same algorithm using aggregate array operations in the style of APL to avoid index
manipulations?

If we were to transform the array of shape (2m)× (2n) into an array of shape m×n×2×2, we could
use the concept of a ranked operator [5] to apply average operation on the last two axes. A ranked operator
can be thought of as a facility to turn a level-2 array (Ar 2 X m×n×2×2) into a nested array Ar 2 (Ar
2 X 2×2) m×n. The argument to the ranked operator typically indicates where we “cut” the shape
vector.

We can define a reshape operation that allows us to change the shape of the array, given that the new
shape has the same number of elements and that the order of elements under some chosen linearisation is
preserved. Here is the type for the reshape operation for arrays with levels:

reshape : ∀ {X l l1 s s1}→ Ar l X s→ prod s ≡ prod s1→ Ar l1 X s1

Implementation of this operation can be found in [12]. We choose a row-major order as our linearisation.
The reshape operation first computes an offset into the linearised array and then turns this offset into the
index of the new shape.
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Note that reshaping an array of shape (2m)× (2n) into shape m×n×2×2 would deliver an incorrect
tiling.

reshape
(

1 2 5 6
3 4 7 8

)
=

((
1 2
5 6

) (
3 4
7 8

))
and not

((
1 2
3 4

) (
5 6
7 8

))
This is happening because under row-major order, the elements of the row are kept together. In order to
fix this problem we need to reshape our array into shape m×2×n×2. However, if we do so, we cannot
apply ranked operator anymore — there is no way to “cut” the m×2×n×2 shape vector so that 2×2
become “neighbours”. It is here the concept of higher-level shapes becomes useful. If we consider the

shape m×2×n×2 as a linearised 2×2 array
(

m 2
n 2

)
then 2×2 are neighbours in the second column of

the shape. Now we can define a smarter version of the ranked operator, that “cuts” the shape across the

column, and produce a level-3 nested array where the shape of the inner array is
(

2
2

)
.

We make this idea precise by defining a ranked operator that “cuts” shapes of any levels into two parts.
Later these parts can be used to create an element-preserving array nesting.

Let us first define the type that would capture all the allowed “cuts” of the given shape:

RankedT : ∀ {l : N}→ ShType l→ Set
RankedT {0} _ = >
RankedT {1} (s , v) = BFin (1 + prod s)
RankedT {suc (suc l)} ((s , v) , _) = Σ (BFin (prod s)) λ i→ BFin (1 + blookup v i)

where blookup has the type Vec X n → BFin n → X and it selects an element from a vector at a
given index.

Level-0 arrays can be cut only in a single way, producing two unit shapes. Then the array of type Ar
0 X tt can be straight-forwardly nested into the array of type Ar 0 (Ar 0 X tt) tt).

Level-1 arrays can be nested in two different ways: with a singleton shape on the outside or on the
inside. That is, [1,2,3] can be turned into a nested vector as [[1,2,3]] or as [[1], [2], [3]].

For arrays of levels greater than one we first pick an index into the shape of the shape (vector v), and
then we pick a number that is less or equal than the element of v at that index. Consider an example. For
a level-2 array of shape (tt , 3 :: []) , m :: n :: k :: [] we first have to pick an element from the
one-element vector, and then we pick a number that is less or equal than 3. Assume, we picked 1, in this
case all the elements of m :: n :: k :: [] with index that is smaller to 1 will form a left shape and the
rest of the index will go into the right shape, resulting in shapes (tt , 1 :: []) , m :: [] and (tt
, 2 :: []) , n :: k :: []. Note that if we pick 0, we end-up with shapes (tt , 0 :: []) , [] and
(tt , 3 :: []) , m :: n :: k :: []. The left shape in this case is a singleton which means that we
will get a valid nesting.

We define a function that “cuts” a shape into two given the shape and the argument of RankedT type.

ranked-cut : ∀ {l : N}→ (s : ShType l)→ RankedT s→ ShType l × ShType l

And we use this function to define the nesting operation.

nest : ∀ {l X s}→ Ar l X s→ (ri : RankedT s)→
let s1 , s = ranked-cut s ri in
Ar l (Ar l X s) s1
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The implementation details can be found in [12]. Unfortunately things get rather non-trivial rather quickly,
as we have to implicitly prove that the shapes obtained as a result of ranked-cut can be merged together
into the same shape.

Finally, consider an index-free formulation of the average pooling using level-3 arrays.

s≡s’ : ∀ m n→ m * 2 * (n * 2 * 1) ≡ m * (n * 2 + (n * 2 + 0))

map : ∀ {X Y l s}→ (X→ Y)→ Ar l X s→ Ar l Y s
map f (imap a) = imap λ iv→ f $ a iv

avgp : ∀ {m n}
→ Ar 2 N ((tt , 2 :: []) , m * 2 :: n * 2 :: [])
→ Ar 2 N ((tt , 2 :: []) , m :: n :: [])

avgp {m}{n} a = let
s1 : ShType 3
s1 = ((_ , 2 :: []) , 2 :: 2 :: [])

, m :: 2 :: n :: 2 :: []
a1 = reshape {s1 = s1} a (s≡s’ m n)
an = nest a1 ((1 bounded auto≥) , (1 bounded auto≥))
r = map ((_/ 4) ◦ sum) an

in reshape r refl

First, we reshape the input array of shape m*2 :: n*2 :: [] into the level-3 array of shape s1 =

(
m 2
n 2

)
.

Then we cut s1 using ranked-cut with the argument (1 , 1) of type RankedT. The first ‘1’ says that from
axes 2 :: 2 :: [] (the shape of s1) we pick the second. The second ‘1’ says that all the s1 elements which
have index where the second component is smaller than one will form the left shape of the ranked-cut.
In other words we are saying that we are cutting s1 vertically, taking the first column as the left shape. Then

we apply the average function to
(

2
2

)
subarrays. The auto≥ is an instance function that automatically

proves trivial inequalities on natural numbers. The map is defined right before the avgp. Note that this
version of the map does not prescribe the order in which array elements are traversed. We say only that all
the elements are modified with some function f of the appropriate type. In the last statement, the equality

between products of
(

2
2

)
level-3 shape and 2×2 level-2 shape is obvious to Agda.

Discussion The definition of the nest operator uses some quite heavy machinery, even though we
eliminated direct index manipulations in the average function. One can ask whether this is justified. Surely,
for the purposes of a single function it may be not. However, the pattern exemplified above, in which we
reshape an array in a such a way that inner dimensions contain the elements of interest and then we map a
function over all these elements is extremely common in array programming. In an array library or a DSL
embedded into Agda-like framework, the ability to define the extended ranked operator is very valuable —
we only have to define it once.

Finally, while defining nest we had to first prove the fact that index to offset and offset to index
functions are inverses of each other. The core of this idea is captured in the theorem io-oi in [12].
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6 Conclusions

We have presented a novel data structure that generalises multi-dimensional arrays. The key to our
construction is a strong symmetry or analogy between the type that describes the shape of the data
structure and the data structure itself. Such a symmetry gives rise to the hierarchy of types — in our case,
an array of natural numbers can be used as a shape descriptor of the next array type in the hierarchy. We
start with unit shapes and corresponding one-element level-0 arrays. After that, level-1 arrays have a
shape that is described by a single natural number and the array itself has n elements. At level 2 we the
shape is given by an n-element array of natural numbers, and so on.

This hierarchy appeared naturally after we encoded multi-dimensional arrays using containers. We
discovered a new container operation, and the iteration of this operation led to the array type hierarchy.

While only the first three levels of the hierarchy have been used in practice so far, we have demonstrated
that higher levels are also of practical useful. They naturally fit the tradition of rank-polymorphic
aggregated operations in the style of APL, suggesting that array operations can be expressed in an index-
free combinator style. The availability of higher-level arrays makes it possible to enrich the functionality
of existing combinators, as we have demonstrated at the example of the ranked operator.

In order to make this idea precise, we encoded the proposed array types and operations in Agda and
observed a number of standard array properties.

This work opens up a number of interesting research directions. For example: using other containers
to form similar type hierarchies. It would be interesting to explore alternative ways to work around the
container extensionality problem, so that less encoding machinery needs to be exposed.
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