
Checkpointing Kernel Executions of MPI+CUDA
Applications

Max Baird�1, Sven-Bodo Scholz1, Artjoms Šinkarovs1, and Leonardo
Bautista-Gomez2

1 Heriot-Watt University, Edinburgh, UK {mmb1,s.scholz,a.sinkarovs}@hw.ac.uk
2 Barcelona Supercomputing Center, Barcelona, Spain leonardo.bautista@bsc.es

Abstract. This paper proposes a new approach to checkpointing MPI-
CUDA applications based on the idea of the state of the art High Perfor-
mance Fault Tolerance Interface FTI. It extends FTI to include support
for checkpointing data that resides on GPUs and it provides a mechanism
to enable checkpointing during kernel executions as well. Jointly, these
extensions ensure that checkpointing of MPI-CUDA applications can be
seamlessly done with minimal program modifications, even if most of the
application time is being spent on GPUs of HPC clusters rather than the
CPU-based host nodes themselves.
The paper provides a description of how such a checkpointing of collab-
orative MPI-CUDA kernels as well as application restarts from those
checkpoints can be achieved. Based on a full-fledged, openly available
implementation in the context of FTI, the paper also provides some initial
evaluations using the well-known Livermore Unstructured Lagrangian
Explicit Shock Hydrodynamics (LULESH) application as a case study.

Keywords: HPC, MPI, GPU, Snapshots, Checkpoints, Resilience.

1 Introduction

While increasing number of scientific applications use GPUs, demonstrating
impressive speedups due to massive parallelism of the architecture, the problem
of resilience for such applications significantly increases. It is a common knowledge,
that checkpointing GPU accelerated applications require synchronization around
kernel execution. GPUs have an uninterruptible execution model, so there is no
universal way to fetch data from the GPU while a kernel is running. Therefore,
snapshots of an application with long-running kernels can be taken only between
the kernel launches. In case these intervals become larger than mean time between
failure (MTBF) of the underlying system, checkpointing for all practical purposes
becomes meaningless. This problem is intensified in the context of MPI, as kernel
launches may happen asynchronously.

In this paper we propose a solution to this problem: we implement a system
that makes it possible to interrupt GPU-accelerated MPI applications without
waiting for kernels to complete. In our previous work on soft kernel interrupts [1]
we show that with a small rewrite, it becomes possible to request a kernel to



2 Authors Suppressed Due to Excessive Length

return before continuing its intended work. Due to physical limitations of a GPU,
not all the threads of a kernel start at the same time. Instead, they are scheduled
in blocks, and each block can check whether to progress or return. With this
observation, we derived a mechanism to automatically rewrite kernels making
them “interruptable”3.

In order to make this mechanism practically useful, we leverage its power in
the context of a checkpoint/restart tool. We extend a state of the art framework
named Fault Tolerance Interface (FTI) [2] that has been rigorously tested on
supercomputer clusters with real-world scientific MPI applications. FTI exposes
a simple API for the application programmer to indicate what data should
be checkpointed at what time. The saving and restoring functionality is then
provided by the framework.

Our first extension to FTI adds the ability to checkpoint data which resides
on the GPU. This allows one to fetch data from GPUs as a part of the FTI
functionality, but it did not solve the necessity to wait till kernel completion
problem.

This is addressed with our second extension which integrates our soft kernel
interrupt technique into FTI. This allows one to mark which GPU kernels
should become interruptable. When FTI decides to make a snapshot, and part
of the data resides on the GPU, these marked kernels will be interrupted. This
happened to be the most challenging part of this work. First, we had to respect
the FTI assumption on the topology of the MPI processes that ensures parallel
snapshotting. Secondly, we had to respect the separation between the snapshotted
data and metadata. The former is often analysed by application scientists whereas
the latter is only used at restart time. Finally, we had to figure out how much
metadata is sufficient to restore the state of the GPU kernel in case it was
interrupted.

The viability of our approach is demonstrated at the example of applying
extended FTI library to LULESH [9] (Livermore Unstructured Lagrange Explicit
Shock Hydrodynamics), a widely studied application which models the motion
of materials relative to each other when subject to forces. We demonstrate that
our system can handle a large scientific CUDA/MPI application; and, most
importantly, that the minimal snapshotting interval of the application does not
depend on the entire kernel runtime. That is we can take a snapshot without
waiting for kernels to complete. With this achievement the snapshot interval is
effectively reduced since checkpoints are now possible during kernel execution.

The individual contributions of this paper are:

– extend FTI to checkpoint GPU data;
– extend FTI to mark kernels so that they could be automatically interrupted

during snapshots;
– demonstrate and verify the approach at the example of a large real world

MPI/CUDA scientific application.

3 Available at https://bitbucket.org/maxbaird/cuda_backup

https://bitbucket.org/maxbaird/cuda_backup


Checkpointing Kernel Executions of MPI+CUDA Applications 3

2 Interrupting A Kernel

In this section we briefly introduce details on CUDA model, the problem of
interrupting a running GPU kernel and our solution to it. CUDA is a parallel
computing platform and programming model for general purpose GPUs devel-
oped by NVIDIA. It provides extensions to C/C++ and Fortran which allow
programmers to define special functions called kernels. These kernels can be
configured to execute in parallel by N different CUDA threads. Each such a
thread runs on a separate GPU core. At runtime, CUDA threads are partitioned
into groups called blocks. As GPU is a coprocessor to the main system, each
application can be naturally divided into host part and device part. The host
code runs on a CPU and device code on the GPU.

Checkpointing a GPU kernel comes with two well-known problems: sav-
ing/restoring the GPU context and interrupting a long-running kernel. The
CUDA runtime implicitly creates an underlying context for communication be-
tween the host process and device. Once created, the context remains attached to
the host process for its lifetime. If a process is checkpointed while maintaining an
active GPU context, restart from that checkpoint will fail because the restored
context will no longer be valid at the device. As CUDA does not provide techni-
cal information or an API for context management and FTI does not preserve
process states, this work is not concerned with the GPU context save/restore
problem. FTI requires the application programmer to indicate what data needs
checkpointing and upon restart, the data is automatically restored from the last
checkpoint.

CUDA does not expose an API to send an interrupt to a running GPU thread.
Nevertheless, threads can be instrumented to interrupt themselves; this is done
by ensuring that the first step of a thread’s execution is to check a host-controlled
flag for permission to continue. All threads within a block wait until an appointed
thread reads and updates a block local variable with the flag’s value. Afterwards,
all threads proceed to make the conditional check whether to continue using the
block local variable. Executed blocks are kept track of via a boolean array so
that when the kernel is resumed only unexecuted blocks proceed. The kernel’s
argument list is adjusted to include the boolean flag and array.

After such a modification a kernel can be interrupted by setting the flag on.
This signals the kernel to return as early as possible. After the kernel returns,
the boolean array of executed blocks is examined. If all blocks have executed
then the kernel is complete; otherwise, the kernel will be relaunched. For more
details refer to [1].

Note that this approach does not work for kernels with explicit intra-block
synchronisation.

3 FTI

FTI is a multilevel checkpointing library for large scale supercomputers. At
extreme scale, supercomputers suffer from frequent failures due to the increased



4 Authors Suppressed Due to Excessive Length

number of components. As scientific applications grow in scale, they are more
prone to failures forcing to restart the execution. At the same time, they also use
more data, and therefore the state to be saved upon a checkpoint is also increasing.
This leads to an I/O bottleneck that could render scientific applications unable
to make progress. To alleviate this problem, FTI makes use of multiple storage
levels, including the global parallel file system (GPFS), as well as local storage
inside the compute nodes. In particular FTI has four levels of checkpointing,
providing a good trade-off between resilience and performance

In addition, to the multilevel aspect of checkpointing with FTI, the library
also provides a feature to make use of spare cores for resilience aspects. This is
particularly useful in systems with accelerators like GPUs, where each GPU is
usually linked to one CPU core, and the other CPU cores are idle. This is often
the case with GPU applications that execute the most compute intensive parts
on the GPU leaving no work for the CPUs. Thus, FTI makes use of the idle CPU
cores to accelerate data transfer to the GPFS as well as other resiliency tasks.

All the complexity of erasure coding, asynchronous transfer and managing
multiple storage levels is hidden by FTI behind a simple interface that can be
summarized in only four functions:

– FTI_Init: This function initializes FTI with the configuration provided by
the user in the configuration file.

– FTI_Protect: This function is used to tell to FTI which are the variables
that need to be checkpointed.

– FTI_Snapshot: This function actually takes the checkpoint according to the
frequency provided in the configuration file.

– FTI_Finalize: This function frees the memory and clean up the different
storage levels.

FTI also includes a few more function for low-level control of the checkpoints
and for checkpointing on specific formats such as HDF5, among others. While
running GPU applications with long-executing kernels there are other additional
changes that need to be done to perform intra-kernel checkpointing. This will be
described in the next section.

4 Extending FTI

In this section we describe both of our extensions to FTI and demonstrate what
happens when applying the extended library to an MPI application with GPU
kernels.

As FTI is only capable of snapshotting data residing on the host, our first
extension adds support for checkpointing GPU data. This extension is orthogonal
to kernel interruption, as it liberates a programmer from manually copying device
data to the host before each checkpoint. When the extension is used on its own,
checkpoints have to occur outside of kernel executions.

When checkpointing with FTI, its API prescribes to pass a pointer reference to
the data to be checkpointed. Therefore, handling data residing on the GPU implies



Checkpointing Kernel Executions of MPI+CUDA Applications 5

determining whether the reference is a valid host or device pointer. Conveniently,
the CUDA API provides the cudaPointerGetAttributes function which makes
it possible to distinguish host and device pointers. For device pointers, a device
to host transfer is made prior making a snapshot, and correspondingly on restart,
the data is copied back to the device. Note that Unified Virtual Addressing
(UVA) and Unified Memory (UM) introduced in CUDA versions 4.0 and 6.0
correspondingly, present a programmer with a coherent view of host and device
memory [12], which in principle should eliminate the need to distinguish between
host and device pointers. No special handling is required for coherent memory
spaces as their pointer attributes will indicate them to be host accessible. FTI
will checkpoint the data as normal with the driver instead performing automatic
transfers from the GPU.

4.1 Adding Kernel Suspension To FTI

Our second extension adds the ability to perform checkpoints during kernel
execution. This is achieved by rewriting the kernel so that it becomes interruptible.

Implementation of this feature comes with a two of challenges. Firstly, apart
from the annotated data, at each checkpoint FTI saves some metadata that is
used during the restore. Per convention, metadata is stored separately enabling
easier analysis of the actual data. This convention has to be respected when
saving data used to recreate the GPU kernels. Thirdly, per FTI convention, the
number of MPI processes launched in every application must be a multiple of
the number of nodes being used. This requirement has to do with how FTI has
been designed to recover from failures. For each group there is a designated head
process to which all other group processes must send their metadata when it is
time to checkpoint. Secondly, every process within a group can launch multiple
GPU kernels.

To ensure an interrupted kernel is correctly restarts it is necessary to track
which blocks have executed. This information constitutes the metadata of an
interruptible kernel. When it is time to checkpoint, the metadata of every inter-
ruptible kernel needs to be transferred to the host process. Then the host process
needs to send the data of each kernel to the head of its group, the group head
is then responsible for determining at which level the checkpoint is being made
where it finally persists the metadata. The restart process is more straightforward
and loads all of the checkpoint metadata at each level and each process is told at
what level it should retrieve the metadata.

Extending FTI to interrupt kernels is essentially a matter of exposing 3 simple
macros via the API to rewrite the kernels as necessary. The API macros are as
follows:

1. FTI_Protect_Kernel
2. FTI_Kernel_Def
3. FTI_Continue_Check

FTI_Protect_Kernel is responsible for rewriting the kernel so that it is
continuously launched and interrupted until all blocks have executed. Two key



6 Authors Suppressed Due to Excessive Length

arguments required by this macro is a unique ID for the kernel, and the interval
of time to wait before issuing an interrupt signal. The ID is useful for FTI to
internally manage and restore the kernel’s metadata. Two additional arguments
are added to the kernel’s argument list; the boolean flag for signalling the kernel
and the boolean array for keeping track of executed blocks. FTI_Kernel_Def
rewrites the kernel’s definition to add corresponding parameters for the signal
and boolean array. Lastly, FTI_Continue_check adds code to check the boolean
flag to determine whether the kernel should continue. It also updates the boolean
array with the block ID if the block is allowed to proceed.

How Kernels Are Protected This section highlights the main steps of pro-
tecting a kernel. A protected kernel is a kernel that can be interrupted during
its execution so that a checkpoint can be made. A description of the macros
is provided in Section 4.1 The primary purpose of FTI_Protect_Kernel is to
initialize the kernel’s metadata and to repeatedly execute the kernel until all
blocks are complete.

Initialization When FTI_Protect_Kernel rewrites a kernel launch, it first makes
a call to FTI_kernel_init which initializes an object of type FTIT_KernelInfo
with information on how to interrupt, checkpoint and restart the kernel. For
efficiency, a kernel’s metadata is initialized once and cleared and reused as
necessary if the kernel with same ID is launched again. The initialisation call
is made irrespective of normal application execution or failure, if a kernel has
associated metadata, this metadata will be restored.

Execution The step after initialisation wraps the kernel launch in a loop which
only terminates after it has been executed by all MPI processes. For every
iteration, each process broadcasts their complete status to all other processes.
The launch loop’s terminating condition is orchestrated this way to prevent the
application from hanging during a checkpoint. The process for FTI to make
a checkpoint includes calling an MPI collective function which requires the
participation of all processes. If some processes were to complete their kernels
early, and allowed to leave the launch loop, other processes creating a checkpoint
while within the loop would wait indefinitely.

Next, the kernel is launched asynchronously and the host sleeps for the
duration of the quantum. When the quantum expires, the host sends a request
to the kernel and waits for it to return. After the kernel returns, a count of its
executed blocks is made, if the sum is equal to the number of blocks launched the
kernel is marked as complete. The number of blocks executed and the kernel’s
complete status metadata is then updated. Finally, a snapshot is attempted, and
based on the configured snapshot frequency a snapshot may or may not be made.
The kernel will be relaunched until it is complete.



Checkpointing Kernel Executions of MPI+CUDA Applications 7

4.2 What Happens At Checkpoint Time

It is the task of a programmer to decide what application data needs protecting for
a successful restart. Therefore, we are mainly concerned with metadata generation,
including the kernel one. For each group of processes, the process with group
ID zero is identified as the head process. The head process is responsible for
accumulating the metadata from all other group processes via standard MPI_Send
and MPI_Recv functions. The transfer of kernel metadata as listed in Section 4.1
is accomplished in the same manner. After receiving the metadata, the head
process proceeds to write the information to storage at the matching checkpoint
level.

4.3 What Happens At Restart Time

A previously failed application may be restored if at least one checkpoint was
successful prior to failure. When executed, FTI will detect the execution as a
restart and try to recover the most recent checkpoint data. The corresponding
metadata of the recovered checkpoint is also loaded as part of the restart. The
initialization phase of FTI triggers the restart process and subsequently calls a
setup function for kernel protection. If the setup function detects the application
is in recovery mode it attempts to load the metadata for all protected kernels. For
an interruptible kernel, the FTI_Protect_Kernel macro will rewrite the kernel
launch as described, this time however, the kernel’s associated metadata will be
restored instead of newly allocated. The restored metadata contains the list of
executed blocks which the kernel uses to accurately resume.

A previously complete kernel will have its metadata reset so that it can be
launched again. However, If there are multiple kernels to be restored, a check is
performed to ensure that all protected kernels are complete. Since at this point,
whether the kernel is being relaunched immediately after failure or again through
iteration cannot be determined. For the former case, execution must resume from
the incomplete kernel. For the latter case, complete kernels that are not reset
will still launch but do nothing since all blocks are marked as complete.

5 Experimental Setup

From LULESH we used a kernel that is called once for each iteration of LULESH’s
main executing loop. For our experiments only level 1 checkpoints were permitted.
The other levels were effectively disabled by configuring their interval to be greater
than longest running experiment, this was done as the time taken for checkpointing
is not consistent for each level. First we establish then experimentally verify a
simple model to determine the frequency at which kernels may be interrupted.
Next, we experiment with a simple LULESH configuration of 1 MPI process to
determine if kernel interruptions fit our model by triggering interrupts as often



8 Authors Suppressed Due to Excessive Length

as possible. Finally, we use a real world configuration4 of multiple MPI processes
with heavier application workloads and a practical checkpoint interval.

All experiments were executed using an AMD Opteron 6376 CPU running
Scientific Linux Release 7.6 (Nitrogen), kernel version 3.10.0. The system has
1024GB of RAM and an NVIDIA TITAN-XP GPU with 12GB of global memory
connected via PCIE x16. For our experiments CUDA version 10.0 was used with
driver version 410.79.

6 Case Study

The primary control flow of LULESH consists of a loop which drives all kernel
invocations. For our case study we evaluate three versions of LULESH, a native
version with no changes, a version with the FTI library and a version with
FTI extended to interrupt kernels. A functionality test is first performed to
ensure that LULESH still correctly runs to completion after an interrupt as been
triggered from within a kernel. For this test, the native version of LULESH was
configured and executed so that its solution was written to a file. The kernel
interruptible version of LULESH was then executed with the same configuration
and prematurely terminated after at least one checkpoint. It was verified to have
restarted correctly via a checksum comparsion against its solution files and the
native’s solution files.
—————————————–

The goal of our evaluation is to verify that FTI extended with ability to
interrupt kernels solves the problem of checkpointing an application with long-
running kernels. For the evaluation, the number of possible snapshots is counted
and each snapshot is verified to break the kernel after a number of executed
blocks. The extension makes it possible to interrupt earlier which minimises
the snapshot interval. Our first experiment verifies the simple model we use to
interrupt kernels. The second experiment verifies our approach works on a simple
configuration of LULESH and the third experiment demonstrates the validity
of our approach on a realistic configuration of LULESH. The details of these
experiments are presented in this section.

There is a simple model that should indicate how many kernel interrupts
are possible due to there being a limit to the number of threads a GPU can
simultaneously execute. If a kernel is configured to exceed this limit then the GPU
will be oversubscribed. An over-subscription factor of a GPU can be determined
by: Kn

Ngpu
, where Kn is the desired number of threads and Ngpu is the number of

threads the GPU can simultaneously execute. Using this model, we were able to
confirm experimentally that the over-subscription factor has a direct influence
on the rate of interrupts which decreases the snapshot interval.

4 https://github.com/maxbaird/luleshMultiGPU_MPI/tree/
integrating-fti-protecting-kernels

https://github.com/maxbaird/luleshMultiGPU_MPI/tree/integrating-fti-protecting-kernels
https://github.com/maxbaird/luleshMultiGPU_MPI/tree/integrating-fti-protecting-kernels


Checkpointing Kernel Executions of MPI+CUDA Applications 9

 0

 10000

 20000

 30000

 40000

 50000

 60000

0.
53

1.
04 1.

8
2.

85
4.

26
6.

07
8.

33

11
.0

9
14

.4

18
.3

0

22
.8

6

28
.1

2

34
.1

3

S
n
a
p
s
h
o
ts

 P
o
s
s
ib

le

Oversubscription Factor

Between Kernel Invocations
During Kernel Invocations

(a) Interrupts Increase with Oversubscription

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

208 216 224 232 240 248 256 264

S
n
a
p
s
h
o
ts

 T
a
k
e
n

Lulesh Input

FTI Integrated
Kernel Protected

(b) Realistic execution

Fig. 1: Reducing Checkpoint Interval

Figure 1a is the result of the model applied to a simple configuration of
LULESH and clearly shows the total number of application snapshots possible
increases with the over-subscription factor. The significant increase in snapshots
from the application of our mechanism is attributed to the kernel being launched
over 1000 times for each data point. While many more checkpoints are possible,
the results do not precisely fit the simple model for a couple reasons. Firstly,
the quantum needs to be increased between interrupts since previously executed
blocks will still be scheduled as normal. Although these blocks will terminate
early, they still consume time to perform the termination check. If the quantum
is not increased, very few new thread blocks will be scheduled and the kernel will
progress very slowly until all unexecuted blocks are randomly scheduled early. The
amount the quantum should be increased by very much depends on the duration
of Ngpu. The quantum should be increased enough to allow for scheduling as
many new blocks as possible, but not too large so that few or no snapshots are
made. Secondly, all kernels in LULESH are launched asynchronously in their
own streams, this means that multiple kernels execute simultaneously on the
device which means Ngpu represents threads from multiple kernels. In this case,
it is possible to achieve more interrupts of individual kernels since a single kernel
will not dominate the device. For these two reasons, our model needs to be more
complicated but we leave this as future work. Despite this, we demonstrate here
that the proposed approach definitely works and clearly improves the problem
described in Section 2. The additional memory required for the book keeping of
executed blocks does not significantly increase the application’s memory footprint.
It is less than 3MB for our most oversubscribed execution.

Figure 1 applies FTI with our extension to a full application of LULESH with
a snapshot interval of four minutes. The value for the interrupt is represents a
more realistic execution of LULESH and does not try to interrupt the application
as often as possible, so the results for this figure are less dramatic than that of
Figure 1a.



10 Authors Suppressed Due to Excessive Length

7 Related Work

Checkpoint/Restart (CR) techniques are generally done either through proxy,
virtualisation, or can be specifically applied to applications. The work discussed
here is thus grouped accordingly.

GPU Proxies CRUM [4] achieves transparent CR by using a proxy process to
decouple the application process state from the device driver state. This allows
for checkpoints to be made without recording any active driver state. CRUM
is geared toward applications with large memory footprints which make use of
Unified Virtual Memory (UVM). The proxy process creates a shadow UVM
region for each allocation made by the application process and then makes a
corresponding real allocation via the CUDA driver. The shadow and real memory
regions are kept in sync. This setup is necessary because UVM has no API calls
that can be intercepted. However, the restart process is based on the assumption
of deterministic memory allocations that are made by the CUDA driver libraries.
The CUDA documentation does not guarantee this to always be the case. It also
raises the question of what happens if a restart needs to occur on a different device;
while the allocations may be deterministic it does not mean they are consistent
across devices. CRCUDA [17] and CheCL [19] are proxy based approaches that
target CUDA and OpenCL respectively. Like CRUM, CRCUDA is transparent to
the application process. Unlike CRUM, CRCUDA does not rely on deterministic
memory allocations but instead logs and replays CUDA API calls where BLCR [7]
is responsible for saving and restoring the application’s state. CRCUDA does not
support MPI or applications that make use of UVM. CheCL provdes its own
OpenCL library to intercept and redirect API calls to decouple the process from
the OpenCL runtime.

GPU Virtualisation Virtualising GPUs is quite common as exemplified by work
such as [3] [13] [6] [5]. Virtual Machines (VMs) are attractive as they inher-
ently serve as a buffer between the application and the physical device. This
decoupling from the hardware makes things easy for checkpointing especially
in the realm of CUDA where the GPU context cannot be checkpointed along
with the application. A VM approach is similar to a proxy in that API calls
need to be redirected. VMGL [10] is marketed as an OpenGL cross-platform
GPU independent virtualisation solution with suspend and resume capabilities.
Suspend and resume is made possible via a shadow driver which keeps track of
OpenGL’s context state. While OpenGL is supported by all GPU vendors, in
reality it is used chiefly for rendering and not well suited for general purpose
GPU computing. vCUDA [16] follows the identical approach of VMGL using
CUDA instead of OpenGL. Unfortunately, VMs typically add more overhead via
extra communication ultimately degrading performance.

Application Specific CheCUDA [18] and NVCR [11] are currently obsolete CUDA
based libraries because they depend on the CUDA context detaching cleanly
before a checkpoint. Unfortunately, the CUDA context no longer behaves this way



Checkpointing Kernel Executions of MPI+CUDA Applications 11

and is non-reentrant. A restart is not possible if the GPU context was recorded
in the checkpoint. CudaCR [15] is a CR library that is capable of capturing
and rolling back the state within kernels in the event of a soft error. Similarly
for soft errors, VOCL-FT [14] offers resilience against silent data corruption
for OpenCL-accelerated applications. VOCL-FT is a library that virtualises the
layer between the application and the accelerators to log commands issued to
OpenCL so that they may be replayed later in case of failure. HiAL-Ckpt [20] is
a checkpointing tool for the Brook+ language with directives to indicate where
checkpoints should be made. However the development on Brook+ seems to
have stopped with the last official release in 2004. HeteroCheckpoint [8] is a
CUDA library and mainly focuses on how efficient checkpoints can be made by
optimising the transfer of device data.

8 Conclusions & Future Work

This paper demonstrates a system that makes it possible to checkpoint/restore
MPI applications with long running GPU kernels. Its distinctive feature is the
ability to take snapshots without the necessity to wait for kernels completion. To
our knowledge, none of the existing resilience tools can do this automatically.

The system is based on the FTI library — one of the standard resilience
tools; and it is extended with the kernel interruption mechanism that we have
described in [1]. As a result, by using the proposed tool, we significantly reduce
the minimal interval at which the snapshots can be taken, making it possible to
align the snapshot frequency with the MTBF of the system of interest.

We apply our system to the real-word numerical MPI/CUDA application
named LULESH. We verify that the proposed system is operational by running
a number of snapshot/restores that include GPU data; and we demonstrate that
the minimal snapshotting interval actually decreases.

Despite our system being fully operational and production-ready, it comes
with a few limitations that immediately guide our future work. Currently, we do
not verify that automatic kernel interruption mechanism is safe, assuming that
this is a job of a programmer. For example, if a kernel uses explicit intra-block
synchronisation, our mechanism may introduce a deadlock. This is less of a
problem for CUDA systems prior to the version 9, as intra-block synchronisation
was not supported, and use of manual spinlocks are not advised by the manual.
Latest CUDA architectures allow for such synchronisations which we would like
to attempt to detect by means of analysing CUDA kernels.

Currently, the time we have to wait to interrupt the running kernel is equal
to the time it takes to execute one thread of a kernel. If this time happens to
be too large, we need to make our interruption mechanism smarter — we can
check for interrupts not only at the beginning of each block, but also while the
thread is running. This would require a more sophisticated analysis of kernels,
that would take into account dataflow and controlflow.



12 Authors Suppressed Due to Excessive Length

9 Acknowledgement

This work was supported in part by grants EP/N028201/1 and EP/L00058X/1
from the Engineering and Physical Sciences Research Council (EPSRC).

References

1. Baird, M., Fensch, C., Scholz, S., Šinkarovs, A.: A lightweight approach to gpu
resilience. In: Euro-Par 2018. pp. 826–838. Springer (2018)

2. Bautista-Gomez, L., Tsuboi, S., et al.: Fti: High performance fault
tolerance interface for hybrid systems. In: SC ’11. pp. 1–12 (2011).
https://doi.org/10.1145/2063384.2063427

3. Duato, J., Peña, A.J., et al.: rcuda: Reducing the number of gpu-based
accelerators in high performance clusters. In: 2010 International Confer-
ence on High Performance Computing Simulation. pp. 224–231 (2010).
https://doi.org/10.1109/HPCS.2010.5547126

4. Garg, R., Mohan, A., et al.: Crum: Checkpoint-restart support for
cuda’s unified memory. In: CLUSTER 2018. pp. 302–313 (2018).
https://doi.org/10.1109/CLUSTER.2018.00047

5. Giunta, G., Montella, R., et al.: A gpgpu transparent virtualization component for
high performance computing clouds. In: Euro-Par 2010 - Parallel Processing. pp.
379–391 (2010), https://doi.org/10.1007/978-3-642-15277-1_37

6. Gupta, V., Gavrilovska, A., et al.: Gvim: Gpu-accelerated virtual machines. In:
ACM Workshop on System-level Virtualization for High Performance Computing.
pp. 17–24. ACM (2009), http://doi.acm.org/10.1145/1519138.1519141

7. Hargrove, P.H., Duell, J.C.: Berkeley lab checkpoint/restart (BLCR) for
Linux clusters. Journal of Physics Conference Series 46, 494–499 (2006).
https://doi.org/10.1088/1742-6596/46/1/067

8. Kannan, S., Farooqui, N., et al.: Heterocheckpoint: Efficient checkpointing
for accelerator-based systems. In: 2014 44th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks. pp. 738–743 (2014).
https://doi.org/10.1109/DSN.2014.76

9. Karlin, I., Bhatele, A., et al.: Exploring traditional and emerging parallel
programming models using a proxy application. In: 2013 IEEE 27th Interna-
tional Symposium on Parallel and Distributed Processing. pp. 919–932 (2013).
https://doi.org/10.1109/IPDPS.2013.115

10. Lagar-Cavilla, H.A., et al.: Vmm-independent graphics acceleration. In: Proceedings
of the 3rd International Conference on Virtual Execution Environments. pp. 33–43.
ACM (2007). https://doi.org/10.1145/1254810.1254816

11. Nukada, A., Takizawa, H., et al.: Nvcr: A transparent checkpoint-restart li-
brary for nvidia cuda. In: 2011 IEEE International Symposium on Parallel
and Distributed Processing Workshops and Phd Forum. pp. 104–113 (2011).
https://doi.org/10.1109/IPDPS.2011.131

12. NVIDIA Corporation: Nvidia cuda compute unified device architecture program-
ming guide version 10.1.105 (2019), https://bit.ly/2EcQ4hN

13. Oikawa, M., Kawai, A., et al.: Ds-cuda: A middleware to use many
gpus in the cloud environment. In: 2012 SC Companion: High Perfor-
mance Computing, Networking Storage and Analysis. pp. 1207–1214 (2012).
https://doi.org/10.1109/SC.Companion.2012.146

https://doi.org/10.1145/2063384.2063427
https://doi.org/10.1109/HPCS.2010.5547126
https://doi.org/10.1109/CLUSTER.2018.00047
https://doi.org/10.1007/978-3-642-15277-1_37
http://doi.acm.org/10.1145/1519138.1519141
https://doi.org/10.1088/1742-6596/46/1/067
https://doi.org/10.1109/DSN.2014.76
https://doi.org/10.1109/IPDPS.2013.115
https://doi.org/10.1145/1254810.1254816
https://doi.org/10.1109/IPDPS.2011.131
https://bit.ly/2EcQ4hN
https://doi.org/10.1109/SC.Companion.2012.146


Checkpointing Kernel Executions of MPI+CUDA Applications 13

14. Peña, A.J., Bland, W., et al.: Vocl-ft: introducing techniques for efficient soft error
coprocessor recovery. In: SC ’15: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. pp. 1–12 (2015).
https://doi.org/10.1145/2807591.2807640

15. Pourghassemi, B., Chandramowlishwaran, A.: cudacr: An in-kernel application-level
checkpoint/restart scheme for cuda-enabled gpus. In: CLUSTER 2017. pp. 725–732
(2017). https://doi.org/10.1109/CLUSTER.2017.100

16. Shi, L., Chen, H., Sun, J., et al.: vcuda: Gpu-accelerated high-performance comput-
ing in virtual machines. IEEE Transactions on Computers 61(6), 804–816 (2012).
https://doi.org/10.1109/TC.2011.112

17. Taichiro Suzuki, Akira Nukada, S.M.: Transparent checkpoint and restart technology
for cuda applications. https://bit.ly/2DzHGbO (2016), online; accessed 25-April-
2019

18. Takizawa, H., Sato, K., et al.: Checuda: A checkpoint/restart tool for
cuda applications. In: 2009 International Conference on Parallel and Dis-
tributed Computing, Applications and Technologies. pp. 408–413 (2009).
https://doi.org/10.1109/PDCAT.2009.78

19. Takizawa, H., et al.: CheCL: Transparent checkpointing and process migration
of OpenCL applications. In: IPDPS, 2011 IEEE International. IEEE (2011).
https://doi.org/10.1109/IPDPS.2011.85

20. Xu, X., et al.: Hial-ckpt: A hierarchical application-level check-
pointing for cpu-gpu hybrid systems. pp. 1895–1899 (2010).
https://doi.org/10.1109/ICCSE.2010.5593819

https://doi.org/10.1145/2807591.2807640
https://doi.org/10.1109/CLUSTER.2017.100
https://doi.org/10.1109/TC.2011.112
https://bit.ly/2DzHGbO
https://doi.org/10.1109/PDCAT.2009.78
https://doi.org/10.1109/IPDPS.2011.85
https://doi.org/10.1109/ICCSE.2010.5593819

	Checkpointing Kernel Executions of MPI+CUDA Applications

