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Abstract
This paper shows how a Convolutional Neural Network
(CNN) can be implemented in APL. Its first-class array sup-
port ideally fits that domain, and the operations of APL facil-
itate rapid and concise creation of generically reusable build-
ing blocks. For our example, only ten blocks are needed, and
they can be expressed as ten lines of native APL. All these
blocks are purely functional, and they are built out of a small
number of builtin operators, resulting in a highly portable
specification that is immediately runnable and should be
suitable for high-performance optimizations and parallel ex-
ecution.This implies that APL can be seen as a framework to
define shallowly-embeddedmachine learning DSLs without
any external dependencies, making them useful at least for
experiments and prototyping. We explain the construction
of each CNN building block, and briefly discuss the perfor-
mance of the resulting specification.

CCS Concepts • Software and its engineering → Con-
current programming languages;Data types and struc-
tures; •Theory of computation→ Design and analysis of
algorithms.
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1 Introduction
Array languages in general, and APL in particular, are often
acclaimed to be powerful tools of thought, as suggested in
Kenneth E. Iverson’s 1979 Turing Award Lecture [9]. APL’s
design, based on fundamental concepts of natural language,
where data are nouns and operators such as multiply and
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iterate are verbs and conjunctions1, in combination with a
language nucleus of a few pre-defined operators, makes
APL an easily accessible tool for domain experts, without
requiring a strong background in programming.

Problems requiring handling large amounts of data with
some structural regularity are often ideally suited for quick
programmatic solutions in APL. One such area that has
recently gained significant interest is machine learning and
neural networks. Neural networks can be viewed as nested
linear approximations of unknown functions that are poorly
understood analytically. Calibrating these functions from
given input-output pairs, also referred to as “training”, boils
down to iterating mathematically simple operations over
large amounts of data.

While these operations should be ideally suited for array
languages such as APL, machine learning experts tend to
use several domain-specific frameworks, such as Tensor-
Flow or PyTorch, instead. While there is no doubt that
these frameworks are convenient to use, any non-trivial
extensions beyond the provided functionality will require
understanding the underlying codebase which is difficult
due to its enormous size and complex design. This makes
domain experts dependant on framework specialists.

Following the APL as “tool for thought” idea, we inves-
tigate how difficult would it be to define a sufficient num-
ber of TensorFlow-like operators, with a clear mathemat-
ical structure, in native APL, to build a state of the art
hand-written image recognition CNN [14, 27]. First of all,
to our knowledge this has not been done before. Secondly,
if the operators were simple to define, we can ask ourselves,
whether APL is a reasonable language to host a shallowly-
embedded DSL for machine learning.
APL offers a number of purely functional built-in array

operations2: they have no state and operate on immutable
data. New verbs and conjunctions can be expressed as com-
positions of the extant ones, built-in or user-defined, produc-
ing concise, purely functional data-parallel specifications
that are immediately executable.

Our study shows that, for our CNN, the requisite opera-
tions can be expressed in ten lines of native APL code, using
just 22 built-in verbs and conjunctions:
blog←{⍺×⍵×1-⍵}

1See https://www.jsoftware.com/papers/APLDictionary.htm for more
details.
2Although APL includes a number of imperative constructs, we restricted
ourselves to a functional subset.
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backbias←{+/,⍵}
logistic←{÷1+*-⍵}
maxpos←{(,⍵)⍳⌈/,⍵}
backavgpool←{2⌿2/⍵÷4}⍤2
meansqerr←{÷∘2+/,(⍺-⍵)*2}
avgpool←{÷∘4{+/,⍵}⌺(2 2⍴2)⍤2⊢⍵}
conv←{s←1+(⍴⍵)-⍴⍺⋄⊃+/,⍺×(⍳⍴⍺){s↑⍺↓⍵}¨⊂⍵}
backin←{(d w in)←⍵⋄⊃+/,w{(⍴in)↑(-⍵+⍴d)↑⍺×d}¨⍳⍴w}
multiconv←{(a ws bs)←⍵⋄bs{⍺+⍵ conv a}⍤(0,(⍴⍴a))⊢ws}

Such brevity offers several advantages. First, it captures
the computational essence of the underlying problem, and
facilitates communication of the algorithm to colleagues.
The operators are also rank- and shape-polymorphic, mak-
ing them reusable in various contexts. By polymorphic, we
mean that they will operate, unchanged, on arrays of any
rank or shape.

Second, our specification can easily be ported to non-
APL contexts. None of the built-in operators are neural-
network specific, and all of them have precise, well-defined
behaviour.

Finally, the functional nature of our specification, with
element-wise data-parallel operations, presents many op-
portunities for compiler technology to generate efficient,
parallel code, for CPU or GPU target systems, with no APL
source code changes.

The individual contributions of the paper are:
• Framework-free, concise, executable specification of
a CNN in APL

• Design exploration of the CNN and its implementa-
tion

• Brief run-time performance evaluation
The rest of the paper is organised as follow. We briefly

introduce CNNs and APL in Section 2. We explore design
trade-offs of the new operators and how to combine them
in Section 3. We talk about performance considerations and
compiler optimisations in Section 4, discuss related work in
Section 5 and conclude in Section 6.

2 Background
2.1 CNN
This section is an overview of machine learning algorithms,
focusing on the computational aspects of CNNs. For an in-
depth review, refer to [8, 16].
Machine learning algorithms are based on the idea that

we want to learn (guess) a function f that maps the input
variables X to the output variables Y , i.e. Y = f X , in an
optimal way, according to some cost function. After f is
found for the existing sample, we want to use f to make
predictions for new inputs.

CNNs belong to the class of machine learning algorithms
called neural networks. They have a distinctive feature: the
function f : X → Y that we want to learn is a composition
of functions дi , that can be further decomposed into smaller

functions. Overall, such a composition forms a graph (or
network) connecting inputs X with outputs Y .

A typical function composition takes the form: f x =
A (∑i wi (дi x)) where A is an activation function (usually
chosen to be continuous and differentiable, e.g. sigmoid,
hyperbolic tangent, etc.) andwi are so-called weights.These
weights are parameters of the approximation that we want
to find, chosen so as to minimise our cost function.
Usually, neural networks are designed to allow slicing of

the elementary functions дi into layers, so that all elements
of a given layer can be computed independently. Layering
has the beneficial effect of making that computation highly
parallel. A layer is an activation function of the weighted
sumof other layers, somost of the transitions in the network
can be expressed as matrix or tensor operations.
Very often, due to the network size and complexity, a

closed solution that finds optimal weights either does not
exist or is very difficult to find.Therefore, weight prediction
is usually performed in an iterative manner. In this case, the
concept of backpropagation — amethod to calculate the gra-
dient of the objective function with respect to the weights,
is of significant importance. It provides a working solution
that is straight-forward to compute:w := w−η∇F (w)where
w are all the weights in the given network. For the cases in
which our objective function can be written as: F =

∑
i Fi ,

the gradient descent can be rewritten as:w−η∇∑
i Fi = w−

η
∑

i ∇Fi . Furthermore, the stochastic gradient descent [26]
approximates the true gradient as follows:w := w−η∇Fi (w)
which is typically more efficient. Intuitively, if we process a
batch of items, we can update weights after processing one
individual item. Finally, with carefully chosen activation
functions A, the computation of backpropagation can be
expressed as a composition of linear-algebraic operations.

2.2 APL
The design of APL, a language with first-class arrays, is
driven by the desire to find an consistent, terse, and efficient
notation to communicate mathematical ideas. Although this
might seem a purely syntactical consideration, it is taken
seriously by advocates of array languages. The emphasis
is that the user should express what we want to compute,
rather than how it should be computed, using the small-
est number of generic, easily composable primitives. The
shorter the program is, the quicker we, and others, can
understand what it is doing. Furthermore, code that is not
there can not break, so shorter programs are inherently
more bug-free than longer ones.We offer a bit of APL knowl-
edge here, to ease reading the paper. For the full language
reference manual, see [6]. We restrict ourselves to a purely
functional subset of APL, and use no explicit array indexing,
which simplifies automatic or manual analysis of operation
compositions.
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Arrays The principal data type in APL is a rectangular n-
dimensional array — an object that can be indexed with n-
element tuples of natural numbers. Each array carries its
shape — an n-element tuple of natural numbers that defines
the valid set of indices into that array. For example:

w
0 1 2
3 4 5
6 7 8

In this paper, an indented expression is the one we wish to
be evaluated, and the non-indented text comprises the result
of the computation. In this example, w is a variable that
evaluates to a 3 × 3 two-dimensional array with elements
0, 1, 2, . . . . We can select elements from such an array with
two-element tuples, where both of the elements are less
than 3.

We can find the shape of an array using the ⍴ function:
⍴w

3 3

The rank, or dimension, of an array can be found from the
shape of the shape:

⍴⍴w
2

Numbers and characters are zero-dimensional arrays; their
shape is an empty vector, and their rank is 0:

⍴5

⍴⍴5
0

Wecall 0-dimensional arrays scalars and 1-dimensional ones
vectors.

Arithmetic Functions Functions in APL are of order 1
and 2, and application is right-associative. First-order func-
tions can take either one or two arguments3. One-argument
ones have a prefix form; two-argument ones an infix one.
For example:

⍴⍴w
2

2×2+2
8

Right associativity lets us avoid parentheses in the first ex-
pression; we get 8, rather than 6, in the second one. Typi-
cal arithmetic operations include: + - × ÷, the * stands for
power, i.e. 2 * 3 evaluates to 8. A sequence of values is
automatically merged into an array:

2 3 4 5
2 3 4 5

Arithmetic functions are automatically lifted to the element
level, when applying to arrays of the same shape:
3In APL parlance, one-argument functions are called monadic and two-
argument ones dyadic. In this paper, we call them one- and two-argument.

2 3 4 5 + 2 3 4 5
4 6 8 10

When one of the arguments is an array and the other argu-
ment is a scalar, the scalar is extended to be an array of the
same shape as the other argument: 1 + 2 3 4 5 evaluates
to 3 4 5 6 as well as 2 3 4 5 + 1.

Nested Arrays APL supports nested arrays — those with
non-homogeneous elements. This is achieved, primarily, by
means of two functions: enclose ⊂ and disclose ⊃. All ele-
ments of APL arrays are zero-dimensional scalars. Enclose
creates, from any argument array, a scalar, which can then
become an element of other arrays. The value of that ar-
gument array can be be retrieved by applying disclose to
that scalar. The overall concept is similar to the notion of
pointers, in which enclose takes a reference to an object,
and disclose dereferences the reference. For example:

⊂w
┌─────┐
│0 1 2│
│3 4 5│
│6 7 8│
└─────┘

The box, a display artifact of the APL session, shows that
the value is enclosed. The shape of ⊂w is the empty vector,
hence is a scalar. When non-scalar values are written in
sequence, the resulting array contains enclosed elements of
that sequence. For example:

(2 3) w
┌───┬─────┐
│2 3│0 1 2│
│ │3 4 5│
│ │6 7 8│
└───┴─────┘

The shape of the above array is 2. In order to access the
element 4 in the above array we can select (using the ⌷
operator) the second vector element, disclose it, then select
from it at index 1 1:

1 1 ⌷ ⊃ 1 ⌷ (2 3) w
4

Array Functions The one-argument , (comma) function
flattens any multi-dimensional array, in row-major order.
The two-argument version of , (comma) concatenates ar-
rays on the last axis, implying that all the shape elements of
both arguments, except the last one, must be the same:

(,w) (w,w)
┌─────────────────┬───────────┐
│0 1 2 3 4 5 6 7 8│0 1 2 0 1 2│
│ │3 4 5 3 4 5│
│ │6 7 8 6 7 8│
└─────────────────┴───────────┘



ARRAY ’19, June 22, 2019, Phoenix, AZ, USA Artjoms Šinkarovs, Robert Bernecky, and Sven-Bodo Scholz

The two-argument ⍴ function flattens the right argument
array, and reshapes it to the shape of its left argument. If
the right argument has more elements than is required by
the shape, the remaining elements are ignored. If there are
fewer elements, array elements are replicated:

(2 2⍴w) (3 3⍴1 2) (9⍴w)
┌───┬─────┬─────────────────┐
│0 1│1 2 1│0 1 2 3 4 5 6 7 8│
│2 3│2 1 2│ │
│ │1 2 1│ │
└───┴─────┴─────────────────┘

A one-argument version of ⍳ creates an array of the shape
provided by its argument, in which a given element contain
the value of the index of that element:

(⍳5)(⍳2 2)(⍳2 1 1)
┌─────────┬─────────┬───────┐
│0 1 2 3 4│┌───┬───┐│┌─────┐│
│ ││0 0│0 1│││0 0 0││
│ │├───┼───┤│└─────┘│
│ ││1 0│1 1││┌─────┐│
│ │└───┴───┘││1 0 0││
│ │ │└─────┘│
└─────────┴─────────┴───────┘

Higher-order Functions Second-order functions in APL
accept first-order ones as their arguments. A simple exam-
ple is the function composition operator ∘. It acts in the
usual way: (f∘g) e is the same as f(g e). Composition can
be also used for partial applications of two argument func-
tions. We compose the argument with the function either
on the right or on the left:

((÷∘4) 2) ((⍴∘1) 2 2)
┌───┬───┐
│0.5│1 1│
│ │1 1│
└───┴───┘

Composition is often useful because it can save parentheses.
Consider a long expression, e.g. ,w+3×2, that we are want
to divide by four. Instead of writing (,w+3×2)÷4 we can
write ÷∘4,w+3×2. Since element concatenation has a higher
priority than the function application, the +∘3 4 expres-
sion would not work as one might expect. Instead of doing
(+∘3) 4 which evaluates to 7, APL does +∘(3 4) which
produces a one-argument function that adds 3 4 to its ar-
gument. To avoid extra parentheses, it is convenient to use
an identity function, such as ⊢, to inhibit implicit concatena-
tion:

+∘3 ⊢ 4
7

This has some similarity with the $ operator in Haskell or
@@ in Ocaml.

The reduce operator f/ (slash) inserts the two-argument
function f among the elements of the argument array, on
the last axis:

(+/w) (×/1 2 3) (+/1 2 3)
┌───────┬─┬─┐
│3 12 21│6│6│
└───────┴─┴─┘

If the argument array is a single element, then the result is
that element. For empty vectors, +/ and ×/ produce 0 and 1
correspondingly, but for an arbitrary function, reducing an
empty array is an error.
We use two element-wise-like operators: each ¨ and rank

⍤ [2, 3]. The f¨ applies f to each element of the argument
array and in case f evaluates to a non-scalar result, a nested
array is produced. For example:

(⍳¨2 3) (1∘+¨2 2⍴⍳4)
┌───────────┬───┐
│┌───┬─────┐│1 2│
││0 1│0 1 2││3 4│
│└───┴─────┘│ │
└───────────┴───┘

The rank conjunction operator f⍤n is a second-order func-
tion that applies f to the sub-arrays of the n innermost
dimensions of the argument array. When results of f ap-
plications have the same shape s, but are non-scalar, the
shape of the result is the concatenation of the argument
array shape and s. For example:

⍴2 2∘⍴⍤0⊢2 3
2 2 2

Here, we apply 2 2∘⍴ to the elements of a two-element
vector 2 3, obtaining two 2 × 2 arrays, called cells, that are
combined (laminated in APL lingo) into an array of shape
2 2 2. When cell result shapes of f are non-uniform, the
largest shape is taken, and all the other arrays are padded
with zeroes at the end of each axis. In our examples, this
situation does not arise.
Both operators allow f to be a two-argument function, in

which case the derived operator requires argument arrays
on the right and on the left. For the case of the rank operator,
we also have to specify two ranks: for the left and right
arguments. For example:

(2 3⍴¨3 4) ((2 2⍴2)⍴⍤(1 0)⊢2 3)
┌───────────┬───┐
│┌───┬─────┐│2 2│
││3 3│4 4 4││2 2│
│└───┴─────┘│ │
│ │3 3│
│ │3 3│
└───────────┴───┘

The second expression is of shape 2 2 2, where the first 2 2
sub-array consists of 2s and the second one of 3s.
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Defining functions A function is defined using the {}
block that surrounds the body text. For example, a con-
stant function that always produces 42 can be defined as
{42}. Function arguments are bound to variables ⍺ and ⍵
for the left and right arguments, respectively. For example,
{⍵ + 1} 5 evaluates to 6. A function can have local variable
bindings using the assignment operator ←. Multiple state-
ments can be separated either by the ⋄ operator or a line
break. For example, the following function computes the
number of elements in the array:

{s←⍴⍵ ⋄ p←×/s ⋄ p} w
9

The result of a function is the first statement that is not given
a name. Often, as in the above, this is its last statement.

As we have mentioned before, we elided details about
operator semantics that are not relevant to understanding
the rest of the paper. For precise specification, please refer
to [6].

Variable names In the rest of the paper, we use variable
names with unicode symbols. For example: k¹, C², δŷ, etc.
Even though this is not supported by current APL inter-
preters, it may help to relate the code with its mathematical
formulation, and thereby increase the overall readability.

3 CNN Building Blocks
This paper demonstrates the use of a functional subset of
APL to solve a classical hand-written digit recognition prob-
lem, using Zhang’s algorithm, as informally presented in
Fig. 1, with input data from the widely used MNIST data
set 4. The Zhang paper contains a formal mathematical spec-
ification of the algorithm; we present that specification as
a small set of defined APL functions, striving for a good
balance between conciseness and efficiency. The full ver-
sion of this code is freely available at https://github.com/
ashinkarov/cnn-in-apl.

Convolution Thefirst layerC1, computes six convolutions
of the 28 × 28 input image I with 5 × 5 matrices of weights
k11,i . Each convolution computes a weighted sum at every
position of I where k11,i could be placed atop without trun-
cation. This produces six 24 × 24 arrays.

Consider a single convolution over a 2d image I , with
weightsw . In order to facilitate such computations, Dyalog
APL recently (Version 16) introduced a new operator, stencil,
denoted as ⌺, whose semantics prescribe that the array is
padded with zeroes, and then a user-defined convolution
is applied to a sliding window across the padded array, for
example:

{⊂⍵}⌺(3 3)⊢3 3⍴1
┌─────┬─────┬─────┐
│0 0 0│0 0 0│0 0 0│

4See http://yann.lecun.com/exdb/mnist/.

│0 1 1│1 1 1│1 1 0│
│0 1 1│1 1 1│1 1 0│
├─────┼─────┼─────┤
│0 1 1│1 1 1│1 1 0│
│0 1 1│1 1 1│1 1 0│
│0 1 1│1 1 1│1 1 0│
├─────┼─────┼─────┤
│0 1 1│1 1 1│1 1 0│
│0 1 1│1 1 1│1 1 0│
│0 0 0│0 0 0│0 0 0│
└─────┴─────┴─────┘

The algorithm applies stencil to the argument 3× 3 array of
1-s 3 3⍴1, with a sliding window of size 3 3, computing the
enclose {⊂⍵} of each such subarray. The zeroes at the non-
central cells comprise the padding that will be dropped, as it
is not relevant to this algorithm, resulting in the following
code:

t ← ⌊÷∘2(⍴w)-~2|⍴w
(-t)↓t↓({+/,w×⍵}⌺(⍴w)⊢I)

The variable t is the number of elements that have to be
dropped. Per ⌺ semantics, one is subtracted from the even
elements of the weight vector’s shape, and that result is
halved: padding is added at the beginning and end of each
axis. The padding is dropped this way: (-t)↓t↓ — drop t
from the end and drop t from the beginning. Finally, ⌺(⍴w)⊢I
slides a window, of shape identical to w , over the array I
and, at each such position, applies {+/,w×⍵}, to compute
the sum of the element-wise multiplication of w with the
corresponding subarray of I .

Dyalog’s use of padding introduces significant overhead
whenw is large, as it spends time computing result elements
that must immediately be discarded. Also, as ⌺ is Dyalog-
specific and not portable to other APL implementations, we
present an alternative formulation:

s ← 1+(⍴I)-⍴w
⊃+/,w×(⍳⍴w){s↑⍺↓⍵}¨⊂I

The shape of the resulting array, s , is 1 plus the element-
wise difference of the shapes of I and w . We assume that
dimensions of I and w are the same. If we are computing a
three-element convolution over an n-element vector a with
weights b0 b1 b2, the elements of r would be:

n−2
∀
i=0

r [i] =
a[i] ×b0 + a[i + 1] ×b1 + a[i + 2] ×b2. Note that i goes over
the indices of r , not a. All array languages support element-
wise operation on arrays, allowing ∀i . c[i] = a[i] + b[i] to
be written as a = b + c , if a, b, c are of the same shape.
Hence, we can write r = a0 × b0 + a1 × b1 + a2 × b2 where
a0 =

n−2
∀
i=0

a[i], a1 =
n−2
∀
i=0

a[i + 1], and a2 =
n−2
∀
i=0

a[i + 2]. This
simply means that ak = (n-2)↑k↓a. The indices of b deter-
mine how many elements need to be dropped. Generalizing
this to an arbitrary number of dimensions produces (⍳⍴w),
which generates a nested array of the same shape as w , in

https://github.com/ashinkarov/cnn-in-apl
https://github.com/ashinkarov/cnn-in-apl
http://yann.lecun.com/exdb/mnist/
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Figure 1. CNN for digit recognition. The picture is taken from [27]

which the elements are indices ofw , along the lines of what
was done in SaC [17] and MoA [12].

For every such index, apply {s↑⍺↓⍵}, where the left argu-
ment is the index and the right argument is the enclose of I ,
with the help of the each operator, ¨. This produces an array
of shape identical to the shape ofw , in which each element
is the shifted array I . Each such shifted array is multiplied
with the corresponding weight, and that result is summed,
then disclosed, to form an element of the final result. When
we substitute w and I by formal parameters, and abstract
the above expressions as a function, we get:
conv←{s←1+(⍴⍵)-⍴⍺⋄⊃+/,⍺×(⍳⍴⍺){s↑⍺↓⍵}¨⊂⍵}

This formulation of convolution is rank and shape poly-
morphic, as long as the ranks ofw and I are the same.

Multiple Convolutions One way to apply conv 6 times
over I would be to introduce 6 k11 variables, and apply conv
6 times. However, a more elegant and generic way is to treat
k1 as a 3d array of shape 6 5 5, in which case we can use
the rank operator ⍤, to apply conv to every subarray on n
innermost dimensions. For example: f⍤2⊢k¹ would apply f
to every 5 5 subarray in k1. Given that f always produces a
result of shape s , the shape of f⍤2⊢k¹ is the catenation of 6
and s .
C1 prescribes adding a bias to the result of every convo-

lution, so we can use the same pattern: construct b1 as a 6-
element vector, and use the rank operator to add each bias
to the corresponding convolution.The semantics of the rank
operator allows us to combine these steps, as follows:
b¹ {⍺+⍵ conv I}⍤(0 2) ⊢k¹

For two-argument functions on the left-hand side of the ⍤
wemay specify two ranks, one for the left argument and for
the right one. In the above example, we add each scalar from
b¹ to every 2d subarray from k¹. If we generalize this by not
hard-coding the number 2, which happens to be the rank of
I , we obtain a rank- and shape-polymorphic function, which
may be usable in other contexts:

multiconv←{(I k¹ b¹)←⍵⋄b¹{⍺+⍵ conv I}⍤(0,(⍴⍴I))⊢k¹}

The three arguments I k¹ b¹ are passed into the function
in a nested array, as a right argument.

Activation Functions The last step in C1 applies the sig-
moid (a.k.a standard logistic) activation function to all val-
ues. Sigmoid of x is defined as 1

1−ex . Since APL defines the
unary cases of the arithmetic functions ÷ and * as 1

x and ex ,
respectively (where e is the base of the natural logarithms),
we define the activation function as:
logistic←{÷1+*-⍵}

These arithmetic expressions are applicable both to scalars
and arrays, so logistic can be immediately applied to ar-
rays as well, resulting in a shape-preserving element-wise
application of the scalar version of logistic.

Average Pooling The average pooling layer S1 computes
the following function for every image C1

i :

12 12

∀
u v=0 0

S1i [u v] = 1

4

2 2∑
m n=0 0

C1
i [2u+m 2v+n]

That is, split C1
i into 2 × 2 non-overlapping blocks, and av-

erage the elements in each block. A direct translation of the
above formulation into APL would involve array indexing,
which is frowned upon in APL dialects, as it is generally
inefficient in an interpretive environment. The result shape
is the argument shape divided by 2. For each index in this
array, the average of the corresponding elements is:
{avg c[(⊂iv) (⊂iv+0 1) (⊂iv+1 0) (⊂iv+1 1)]}¨⍳(÷∘2⍴c)

where avg can be defined as the APL train:
avg ← {(+/÷≢),⍵}

which is a shorthand, tacit way to express (+/,⍵)÷(≢,⍵), in
which the left hand side of the division sums all the elements
of ⍵ in the raveled (flattened) argument array, and the right
hand side is the number of elements in the argument array.
One way to simplify the generation of these 4 indices is:

{avg c[(⊂2×⍵)+⍳2 2]}¨⍳(÷∘2⍴c)
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This, unfortunately, still generates and uses index vectors,
so we shall explore index-free formulations. First, we ob-
serve that the split into a grid of 2×2with further averaging
is a stencil operation, where the sliding window moves 2
elements along each axis. This pattern can be expressed
with the Dyalog APL stencil operator ⌺, whereby non-unit
movements of the sliding window can be expressed using
two-row matrix, in which the first row is the shape of the
sliding window, and the second row is the step. In our case,
both rows in the matrix are 2 2. According to the padding
formula ⌊÷∘2(⍴w)-~2|⍴w, the stencil of size 2 × 2 does not
create any padding, so we can formulate average pooling as:
avgpool ← {÷∘4{+/,⍵}⌺(2 2⍴2)⍤2⊢⍵}

That is, for every array in the last two dimensions ⍤2, apply
the stencil operation with sliding window of shape 2 ×
2, moving the window 2 elements along every dimension
⌺(2 2⍴2), with the stencil operation that sums all the 4
elements {+/,⍵}, dividing that sum by 4. Despite its concise-
ness, this function uses the Dyalog-specific operator, and it
is specific to 4-element average pooling.

We could also do the splitting of a 2d array c this way:
(x y) ← ⍴c
(x÷2) (y÷2) 2 2 ⍴ ⍉⍤2 ⊢(x÷2) 2 y ⍴ c

That is, cut the matrix across the first axis in 2-row chunks
(x÷2) 2 y ⍴ c.This takes a 2d array of shapex y, producing
a 3d array of shape x

2 2 y, then transposes the last two axes:
⍉⍤2. This gives a result of shape x

2 y 2, which can be cut
along the second axis by a simple reshape (x÷2) (y÷2) 2 2
⍴. Then, we simply apply avg on the last two axes. Finally,
this operation itself has to be applied rank-2, as we want to
pool the last two dimensions:
avgpool ← {

(x y) ← ⍴⍵
avg⍤2 ⊢(x÷2)(y÷2)2 2 ⍴ ⍉⍤2 ⊢(x÷2)2y ⍴ ⍵

}⍤2

C2 and FC Layers Since we represented s as a 3d array
of shape [6, 12, 12], the rank-polymorphic specification of
multiconv is immediately applicable here. Intuitively, if s is
a single entity, then all the left hand sides of the arrows from
S1 to C2 in Fig. 1 merge into a single point, akin to the first
convolution. The argument to conv is of shape 6 12 12, and
each weight k2i ,∗ is of shape 6 5 5, so the result is of shape
1 8 8. We have 12 k2i ,∗ and 12 biases, so the result shape of
multiconv is of shape 12 1 8 8.
A fully connected layer FC is just a convolution with a

weight identical to the shape of the argument array, so we
can use multiconv again. Without additional reshapes, the
shape of the layer S2 would be 12 1 4 4. However, as we
want to compute 10 weighted sums of all the elements,W
becomes of shape 10 12 1 4 4, yielding a result of shape
10 1 1 1 1 from multiconv.

Forward Pass At this point, we have enough building
blocks to define a “forward path” of the network, i.e. Fig. 1,
which generates a 10-element vector of probabilities from
an image I , with fixed weights ki andW , and biases bi and
b.
forward ← {

(I k¹ b¹ k² b² W b) ← ⍵
C¹ ← logistic multiconv I k¹ b¹
S¹ ← avgpool C¹
C² ← logistic multiconv S¹ k² b²
S² ← avgpool C²
ŷ ← logistic multiconv S² W b

}

Each layer is a single multi-dimensional array, and that we
compute the FC layer directly from S2. The final answer is
the index of ŷ with the largest value:
{⍵⍳⌈/⍵},ŷ

I.e. for the raveled ŷ, find the maximum element ⌈/⍵, and
find the index where this element occurs for the first time
⍵⍳. The ⌈/⍵ produces the two-argument (dyadic) maximum
function ⌈ over the array, and the two-argument version of
⍳ with the array on the left and the element on the right
returns the first occurrence of this element in that array,
which we abstract into this function:
maxpos ← {(,⍵)⍳⌈/,⍵}

3.1 Gradient Descent
Training of the network entails propagation of the recogni-
tion error back into weights and biases, which we do using
stochastic gradient descent. The overall idea is to consider ŷ
as a function overweights and biases.The objective function
we want to minimise is: o = 1

2

∑
i (ŷi − yi )2, where y is

the correct answer, i.e. a 10 element vector with value 1 at
the position that corresponds to the digit depicted in I and
zeroes at all the other positions. Due to the linear nature
of the network, and carefully chosen activation functions,
computation of partial derivatives makes a great use of the
chain rule. For example, the derivative of our objective func-
tion over some weightw would be:

∂o

∂w
=
∑
i

∂o

∂ŷi
·
∂ŷj

∂w
=
∑
i

(ŷi − yi )
∂ŷi
∂w

The chain rule can then be applied again, allowing us to
“reverse” each layer and reconnect them by inverting the
arrows in Fig. 1. For precise mathematical details, please
refer to the Section 2 of [27]. In the rest of this section, we
focus on the implementation of these back layers.

Mean Squared Error Our objective is the sum of squared
differences divided by two. This can written as a direct
translation of the above sentence:
meansqerr ← {÷∘2+/,(⍺-⍵)*2}
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Note that we ravel (flatten) (⍺-⍵)*2 to produce a 10-element
vector from ŷ, obtaining a scalar (zero-dimensional array) as
a result of sum-reduction.

Back Sigmoid The derivative of the sigmoid function is:
∂

∂x
σ (x) = σ (x)(1 − σ (x))

Since our sigmoid functions are always “between” the lay-
ers, the derivative of sigmoidwill be always in a larger deriv-
ative chain. Therefore, for convenience, we add a multiplier
for that part of the chain:
blog ← {⍺×⍵×1-⍵}

Back Average Pooling If 2d array s is the average pooling
of t , then each si is defined as 1

4 (ti + tj + tk + tl ) for some
indices j,k, l . Any partial derivative of si over ti is simply
1
4 . Therefore, backpropagation through the average pool-
ing layer can be computed as: ∆t[i j] = 1

4∆s[bi/2c bj/2c].
Higher-rank arguments apply this expression on the inner-
most 2d planes, elegantly expressed in APL as:
backavgpool ← {2⌿2/⍵÷4}⍤2

This reads: for a given argument array ⍵, divide every el-
ement by 4, replicate every column twice (2/), and then
replicate each row twice (2⌿). Finally, apply this function
rank-2. backavgpool hardcodes the size of the pooling, but
we can, in principle, provide a left argument of pool size to
give a generalized pooling, e.g.
{(x y)←⍺ ⋄ {x⌿y/⍵÷x×y}⍤2 ⊢⍵}

Back convolution The linear nature of the convolution
implies that the derivatives are constants, namely the input
of the convolution itself. Hence, we can approximate the
error in the weights as a convolution of the input with the
error. So, there is no need for a separate function.

The error of the bias is a sum of the error we are prop-
agating from the previous stages of the chain, since the
derivative of the bias is constant 1.
backbias ← {+/,⍵}

This function is so trivial that we consider it nugatory, as
its inline definition, at three characters, is shorter than its
name, and the meaning of the expression is immediately
evident.We keep the definition as it represents a logical step
in the algorithm.

To compute the propagation of the error into the input of
the convolution, note that the derivatives of the convolution
with respect to the input are simply weights, with some care
taken to describe the index relation between the value we
are propagating and the index of the input that it affects.
Consider the following example:

in w d
┌───────────┬───┬─────┐
│0.5 1 1.5 2│1 2│1 2 3│
│2.5 3 3.5 4│3 4│4 5 6│

│4.5 5 5.5 6│ │7 8 9│
│6.5 7 7.5 8│ │ │
└───────────┴───┴─────┘

This shows three arrays: in is the argument. Its values are
not relevant, but they are useful in talking about positions;
w are weights and d is the propagated error. The convolu-
tion is performed in reverse, to determine which weights
contribute to which positions. It is clear that weight 1 con-
tributes to the positions of in from 0.5 to 5.5, as multiplica-
tion of any other element with the weight 1 implies out of
bound access. By the same reasoning, weight 2 contributes
to positions from 1 to 6; weight 3 from 2.5 till 7.5 and
weight 4 from 3 till 8. This pattern can be expressed using
the concept of overtake: a take of more elements than there
are in the array pads the result with zeroes:

5 ↑ 1 2 3
1 2 3 0 0

¯5 ↑ 1 2 3
0 0 1 2 3

This means that we can overtake d at every weight index in
the following way:

,w{(⍴in)↑(-⍵+⍴d)↑d}¨⍳⍴w
┌───────┬───────┬───────┬───────┐
│1 2 3 0│0 1 2 3│0 0 0 0│0 0 0 0│
│4 5 6 0│0 4 5 6│1 2 3 0│0 1 2 3│
│7 8 9 0│0 7 8 9│4 5 6 0│0 4 5 6│
│0 0 0 0│0 0 0 0│7 8 9 0│0 7 8 9│
└───────┴───────┴───────┴───────┘

I.e., pad with zeroes on the top/left with (-⍵+⍴d)↑, then trim
the right/bottom with (⍴in)↑, then multiply shifts by the
corresponding weight and sum that result:
backin ← {(d w in)←⍵ ⋄ ⊃+/,w{(⍴in)↑(-⍵+⍴d)↑⍺×d}¨⍳⍴w}

Finally, the above three steps are combined to create a
function that propagates weight-, bias-, and input-errors:
bmconv ← {

(δo ws in bs) ← ⍵
d ← ⍴⍴in

δin ← +⌿δo {backin ⍺ ⍵ in} ⍤(d, d) ⊢ ws
δws ← {⍵ conv in} ⍤d ⊢ δo
δbs ← backbias ⍤d ⊢ δo
δin δws δbs

}

As can be seen, this ismainly bookkeeping.We apply backin
rank-d, then sum along the leading axis. This builds on the
assumption that convolution evaluates a vector of outputs.
If rank increases, the enclose/disclose approach can be used
to sum the subarrays. Back-weights and back biases are
simply applications of the corresponding functions using
rank. Putting all the basic blocks together, we have:
train ← {

(I y k¹ b¹ k² b² W b) ← ⍵
C¹ ← logistic multiconv I k¹ b¹
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S¹ ← avgpool C¹
C² ← logistic multiconv S¹ k² b²
S² ← avgpool C²
ŷ ← logistic multiconv S² W b
δŷ ← ŷ - y
e ← ŷ meansqerr y

(δS² δW δb) ← bmconv (δŷ blog y) W s² b
δC² ← backavgpool δS²

(δS¹ δk² δb²) ← bmconv (δC² blog C²) k² S¹ b²
δC¹ ← backavgpool δS¹

(_ δk¹ δb¹) ← bmconv (δC¹ blog C¹) k¹ I b¹
δk¹ δb¹ δk² δb² δW δb e

}

4 Performance
Although our paper focuses on APL’s productivity as a spec-
ification language, it is enlightening to compare execution
times of our APL-based CNN implementation against ones
that use state of the art frameworks.

Experimental Setup Weconducted timing tests on a 16GB
Intel i7-6700HQ CPU, at 2.60GHz running Gentoo Linux,
kernel version 5.0.0.We usedDyalogAPL versions 16.0.32742
and 17.0.35814, SaC compiler version 1.3.3-MijasCosta-334-
geedc7, and TensorFlow version 1.13.0. We present arith-
metic means of timing for system initialisation, training
1000 images, updating weights at every image, and recog-
nising 10000 images.

Experimental Result Analysis The elapsed times for our
CNN performance measurements are given in Figure 2.

Environment Init (s) Train 103 (s) Test 104 (s)
APL 0.3 16.3 33.6
TensorFlow 6.0 0.85 6.3
SaC 0.4 0.65 2.2

Figure 2. Elapsed times (seconds) for CNN benchmark

As can be seen, in comparison to TensorFlow, the APL
version is about 20 times slower when training and about
5 times slower when recognising the images. APL’s initial-
isation is fast, as it reads four input files, the largest of
which is the 60000 training images, occupying about 47MB.
TensorFlow, by contrast, takes much longer to initialise,
although this rarely presents a problem when running real-
world neural networks, because long training times domi-
nate execution time.

The execution time difference is unfortunate, and this
may be part of the price for concise framework-less spec-
ification. Historically, the highly interactive nature of APL
interpreters has limited the scope of performance improve-
ments, as syntax classes can change underfoot during exe-
cution: e.g. verbs can become nouns, or vice versa. Secondly,

generation of large number of nested arrays drags APL per-
formance down by orders of magnitude, due to the load
placed on the array memory subsystem. Finally, APL inter-
preters typically do not perform simple optimizations, such
as code motion to lift loop-invariant expressions, because of
a chosen interpreter design decision to allow interruption
and continuation of evaluation, an interactive session fea-
ture that few other systems support. The absence of special
treatment of the convolution operator and lack of just in-
time compilation also contribute to poor performance.
At this stage, we could say that APL is nothing but a

prototyping language, but the SaC [18] runtime brings us
hope.The SaC runtime reflects the performance of our hand-
translated version of the APL code into SaC, a functional
array-oriented language for high-performance. It turns out
that a very similar specification can bridge the performance
gap between APL and TensorFlow, with APL potentially
even outperforming the latter. All that remains to do is to
automate translation of APL into a compiled language like
SaC.

Our initial attempts to use the APEX compiler [3] were
not successful, as APEX did not support dfns and nested
arrays. The current version of APEX includes a simple Dfn-
to-TradFn converter, as well as support for stranded func-
tion arguments and results. Work to replace remaining uses
of nested arrays in the CNN code is underway as of this
writing, opening up immediate perspectives for future work.
As an added bonus, when generating SaC code, we can
immediately obtain parallel execution on multi-core archi-
tectures, as well as GPUs, by simply providing a flag to a
compiler.

5 Related Work
In this section, we briefly overview state of the art machine
learning networks and the landscape of array languages.

Machine Learning Frameworks State of the art machine
learning frameworks, such as TensorFlow [1], Caffe [10],
CNTK [25], Torch [5], and PyTorch [15] have similar over-
all designs: a core part of the framework is written in C/C++,
and an interface part is written in a dynamic scripting lan-
guage, like Lua or Python. The interface wraps around the
core components to provide a convenient glue for connect-
ing highly-optimisedmachine-learning primitives for linear
algebra and tensor operations.
The core components are pre-optimised for the range

of architectures including multi-core CPUS, GPUs, and dis-
tributed systems. TensorFlow also supports custom hard-
ware known as Tensor Processing Units.

All the frameworks attempt to optimise the algorithm
prior to running it. In these frameworks, the neural network
has an internal representation in the form of a dataflow
graph, in which the graph nodes are computation layers,
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and its edges are input tensors for the given layer. Optimi-
sation on the dataflow graph makes it possible to merge
sequences of operations into larger and potentially more
efficient operations, and to run concurrent nodes in parallel.
The availability of the dataflow graph gives rise to automatic
differentiation, which simplifies expressibility of the speci-
fication.

Array Languages A number of array language, including
J [20], K [24], and Nial [11], follow APL’s design. They treat
every object as an array (maybe except functions) and pro-
vide a large subset of the APL operators. Typically, these lan-
guages are interpreted, which limits potential optimisations
and performance, yet maintaining excellent interactivity.

The untyped nature of APL implies that nearly all errors
are detected only at runtime. In contrast, SaC, Futhark [7],
Remora [19] and Qube [22] are array-oriented functional
languages with static type systems, which makes it pos-
sible to detect range and domain errors prior to program
execution. Instead of providing built-in APL operators na-
tively, these languages offer low-level constructs which are
typically sufficient to implement APL operators as library
functions.The compilers provided for these languages focus
on generating high-performance code for various architec-
tures, including multi-core CPUs and GPUs.

Finally, Matlab [21], Julia [4] and Python [23], with its
Numpy [13] library, offer some notion of multi-dimensional
arrays and a subset of APL operators. These are embedded
in the context of a general-purpose imperative language. All
the mentioned languages come with interpreters only and
rarely exhibit exceptional levels of performance, yet, like
APL, they are very useful for quick prototyping.

6 Conclusions & Future Work
In this paper we demonstrated how CNNs can be imple-
mented in APL, resulting in a concise framework-free spec-
ification that is immediately executable. The CNN-specific
building blocks can be implemented in 10 lines of APL. The
resulting primitives are rank- and shape-polymorphic, mak-
ing them immediately applicable in other contexts.

Once the building blocks are implemented, domain ex-
perts are in a similar situation as when they use machine-
learning frameworks, such as TensorFlow. The primitives
look similar to the TensorFlow ones, and they have to be
combined into networks that can be trained and executed.
One noticeable difference though is the availability of au-
tomatic differentiation in TensorFlow, which noticeably
simplifies specification of back propagation.

Our proposed APL approach exposes the precise imple-
mentation of the framework, and due to its concise nature,
enables domain experts to examine and alter the framework.
In contrast, finding out actual implementation details of
frameworks such as TensorFlow is challenging, despite
source code being available. The main reasons for this are:

a large volume of code, complex, multi-layered design, and
dependencies on a number of external libraries. Minor ex-
tensions are typically allowed by the framework design,
whereas substituting core parts, or changing low-level de-
tails like optimisations or computational behaviour is typi-
cally not feasible for people that are not deeply involved in
the implementation of the framework under consideration.
The key to the APL’s conciseness is the combinatorial

nature of the language. None of our operators use explicit
indexing; this improves clarity and reduces the potential for
mistakes in the specification. Also, as all our combinators
are purely functional, the resulting specification can be eas-
ily ported to non-APL contexts.
This sheds some light on using APL as a framework for

shallowly-embeddedmachine learningDSLs.We can clearly
see that this is possible; however, our runtime experiments
suggest that existing tools fail to deliver the levels of perfor-
mance comparable with the state of the art frameworks. As
we have seen in our experiments, this is a technical problem,
rather than a conceptual one, and one that can be solved
by using compilation technologies. This brings us to future
work.

As noted, we are addressing the absence of dfn and nested
array support in the APEX compiler, and intend to verify
whether compiler-generated SaC code will perform as well
as the hand-written version that we used for measurements.
At the same time, we are going to investigate the code gener-
ated by the SaC multi-thread and GPU backends, to ensure
that they deliver significant speed-ups on those architec-
tures. We also expect that replacing nested arrays usage in
the APL code by uses of the rank conjunction will simplify
the task of compiling that code, and will certainly make it
perform considerably faster in an interpreted environment.
Finally, we would like to investigate cleaner ways for

users to extend APL interpreters — ones that do not re-
quire the assistance of an APL implementer. For example,
a pseudo-primitive, perhaps written in C or SaC, to imple-
ment the idiom s↑⍺↓⍵, would reduce the number and size of
intermediate arrays used in conv. This may be possible to do
via the ⎕NA interface, provided by Dyalog APL.

Similarly, potential performance benefits from invoking
Dyalog APL’s JIT facility are yet to be investigated.
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