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Abstract. Resilience for HPC applications typically is implemented
as a CPU-based rollback-recovery technique. In this context, long run-
ning accelerator computations on GPUs pose a major challenge as these
devices usually do not offer any means of interrupt. This paper proposes a
solution to the aforementioned problem: it suggests a novel approach that
rewrites GPU kernels so that a soft interrupt of their execution becomes
possible. Our approach is based on the Compute Unified Device Archi-
tecture (CUDA) by Nvidia and works by taking advantage of CUDA’s
execution model of partitioning threads into blocks. In essence, we re-
write the kernel so that each block determines whether it should continue
execution or return control to the CPU. By doing so we are able to per-
form a premature interrupt of kernels.
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1 Introduction

A large number of high-performance systems these days are equipped with
GPGPUs [2,6,7,13,15], as they provide higher energy efficiency and offer a sig-
nificantly larger degree of parallelism than traditional multi-core CPUs. As a
result, the number of compute cores on such systems becomes very large, which
in turn, increases the probability of hardware failures. This brings the prob-
lem of resilience to hardware failures, which is known to be a challenging topic
already [3,5], to the next level. First, the mean time between failures (MTBF) for
a single node becomes shorter. Second, resilience for failing GPU nodes requires
special treatment.

The de-facto resilience technique today is application checkpointing. A check-
pointing system pauses the running application and takes a snapshot of its state.
The state is either captured automatically by recording register values and the
state of the memory of a paused process (e.g. by using software such as BLCR [1])
or by explicit stores of relevant data (e.g. by using libraries such as FTI [4]). On
restore, the captured state is restored and the application restarts its execution
from the latest checkpoint. For applications that use GPUs, the described check-
pointing mechanism will not work without further measures. GPU kernels do not
run as a part of any operating system processes. Even if a process is suspended,
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the GPU kernels keep on running. Actually, at the time of writing, we are not
aware of any hardware mechanisms to interrupt a running GPU kernel.

This behavior poses a serious problem to automated checkpoint mechanisms
such as BLCR: as the GPU cannot be interrupted, it is not possible to save a
stable snapshot of the GPU state. Checkpoints are only possible between kernel
invocations. The problem is intensified, as the size of memory on the GPUs
increases, resulting in longer runs of the individual kernels [18,19]. In the case
of long kernel execution times, explicit stores of relevant data do not help either
as snapshots can only be orchestrated between kernel executions. Furthermore,
snapshots require all relevant data to be present on the host.

This paper focuses on finding a solution to the GPU kernel snapshotting
and restoring problem in a checkpointing-system agnostic way. We propose an
approach that is based on the observation that most GPU kernels schedule orders
of magnitude more threads than a GPU can physically execute concurrently.
While it is not possible to interrupt an individual thread, a thread can voluntarily
stop its execution. Thus, in principle, we are able to interrupt a kernel execution,
after the currently running threads have terminated.

We describe a technique on how to rewrite CUDA kernels so that they become
“interruptible”, and we provide a library1 with a concise API to simplify this
task. We demonstrate how the proposed approach can be used by modifying the
code of a real world application. We measure the overheads that our approach
brings, using real-world and synthetic benchmarks, concluding that typically the
overheads are below 0.2%. This shows that the proposed approach can be used
in combination with any checkpointing system for applications that use GPUs.

2 Mechanism Description

The key idea of our approach lies in the observation that due to resource con-
straints, it is not possible to schedule all kernel threads simultaneously, instead,
threads are scheduled in blocks. After all threads in a block are terminated, they
are replaced by remaining threads of the compute kernel. This staggered starting
makes it possible to instrument every thread at the beginning of its execution
with a check of a shared interrupt variable and terminate the execution if the
variable is set to a specific value. As a result, a kernel can be forced to terminate
in a very short time.

Issuing an interrupt. In order to implement the interrupt mechanism, we use
a memory-mapped integer variable that is shared between the host and the
device. On the host we define a variable and ask the CUDA driver to share it
with the GPU:

1 int ∗ t imeout = 0 ;
2 cudaHostAlloc ( timeout , s izeof ( int ) , cudaHostAllocMapped ) ;

1 Freely available at https://bitbucket.org/maxbaird/cuda backup.

https://bitbucket.org/maxbaird/cuda_backup
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For a host to issue an interrupt, it writes a value 1 into a shared variable
*timeout. The host waits for the kernel to terminate then transfers data from
the GPU. After that the value of *timeout can be set back to 0 so that further
kernel invocations could perform some useful work.

Fig. 1. GPU multithread execution model. (a) shows the conceptual view with all
threads running in parallel, while in reality (b) the number of concurrent executing
threads is limited by hardware resources.

Interrupting a kernel. The CUDA execution model [11] suggests that all the
threads are launched simultaneously and the kernel runs till all the threads are
completed (see Fig. 1a). However, in reality, threads are scheduled in blocks as
it is shown in Fig. 1b.

While indeed a thread cannot be interrupted once it has been started, a
thread can decide to interrupt itself. Such a decision can be based on checking
the state of a global variable at the start of execution. According to the model
from Fig. 1a, this approach would not work: all threads check the variable at the
same time and then either all continue or interrupt. However, using the more
realistic model, the threads that have not been scheduled will observe a change
in the variable and will interrupt. As a result, the kernel terminates faster than
the case where we wait for all threads to complete, as we only have to:

– wait for all the currently scheduled threads to complete; and
– execute all the remaining threads where the first statement within every such

a thread will terminate its execution.

Consider a host issuing an interrupt at time t1 in Fig. 1b. The kernel can
complete at t1′ + max((c × n), tr), where c is the time it takes to execute one
conditional per block (GPU executes in a lock-step), n is the number of remaining
unscheduled blocks, and tr is the time to finish already scheduled threads.

Snapshotting. After a kernel has been interrupted, the host copies all data that
will be necessary to restart the kernel. In the simplest case, these data include
inputs of the kernel and partial outputs of the kernel. In addition, we need to
perform a bit of bookkeeping via a boolean array which tracks which threads
have been executed to completion. At the start of each thread, we check whether
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this thread has yet to run. At the end of each thread, we update this boolean
array to indicate that it has completed. At every snapshot, we also copy this
array back to the host.

Restarting. Restarting a kernel is straight-forward: we copy all the kernel-
relevant data back to the GPU and launch the kernel again. We use above
mentioned mask to prevent already completed threads from executing again.

Fig. 2. How to apply the proposed technique to the original application.

2.1 Integration with Checkpointing System

Once the GPU kernel has been interrupted and all the relevant data has been
copied to host, it is safe to snapshot the global state of the application. However,
as most checkpointing systems are not aware of GPUs, it is difficult to predict
when the checkpointing will happen, and, as a consequence, when to capture the
state of running kernels. Our solution to this is to make kernel snapshots every
n time units. After each snapshot, the host checks the boolean array for any
unfinished threads. If such threads exists, then the kernel is relaunched. This
process continues iteratively until all threads are executed.

To apply the proposed technique, we modify the kernel and the code that
invokes the kernel as shown in Fig. 2. The wait time on the host should ideally
fall within the MTBF.

2.2 Synchronisation Within Kernels

The approach presented so far works for kernels that do not use explicit syn-
chronisation because explicit synchronisation breaks the proposed approach. The
reason for this is that threads within blocks are not necessarily scheduled all at
the same time. Threads within blocks are split in warps and if a warp is stalled
for any reason the scheduler is free to replace it with another warp. Consider the
case of a kernel with explicit synchronization, and after the first warp reaches
the synchronization point, an interrupt occurs. In this case all the other warps
will skip their executions, but threads from the first warp will never leave syn-
chronisation point, resulting in a hung kernel.
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Our solution to this problem is to terminate the entire block when we receive
an interrupt from the host. To do this, the value of timeout is only read once by
thread zero of warp zero and stored in a variable local to the block. A block-level
synchronisation point is set immediately after the read of timeout so that no
warps can proceed until timeout has been read. After all warps have synchro-
nised, the block-local variable is checked to determine whether or not the block
should be executed.

A final note about synchronization, CUDA 9.0 introduced grid and multi-
device synchronization along with co-operative groups to the programming
model. Co-operative groups extends the CUDA model to organise groups of
co-operating threads so that programmers can express the granularity of com-
municating threads. The approach presented in this paper is unaffected by ker-
nels using co-operative groups because co-operative groups are within blocks
and still obey block level synchronization. Our approach cannot work if a ker-
nel performs grid or multi-device synchronization because our mechanism would
cause the kernel to hang if some blocks terminate early before reaching the grid
synchronization point and other blocks are already in wait of synchronization.
In summary, the advantages of this approach are as follows:

1. Only makes sense for long running kernels
2. The kernels must be resource intensive enough to exhaust the parallelism in

the GPU
3. Does not work for kernels that perform grid or multi-device synchronization
4. May not be suitable for kernels that consume most of the GPU memory

2.3 Implementation

For the adoption of the proposed approach we introduce an API2 that facili-
tates adjustment of applications. The core of the API consists of three macros:
BACKUP KERNEL DEF, BACKUP CONTINUE, BACKUP KERNEL LAUNCH and a wrapper
around cudaMalloc. Assuming that an application has one kernel, we replace
cudaMalloc with its BACKUP_ version. We adjust kernel definitions as follows:

1 g l o b a l void
2 kernel name ( /∗ args ∗/ ){
3 /∗ k e rne l body ∗/
4 }

1 g l o b a l void
2 BACKUP KERNEL DEF ( kernel name ,
3 /∗ args ∗/ ){
4 BACKUP CONTINUE ( ) ;
5 /∗ k e rne l body ∗/
6 }

2 The API with its documentation and examples can be found at https://bitbucket.
org/maxbaird/cuda backup.

https://bitbucket.org/maxbaird/cuda_backup
https://bitbucket.org/maxbaird/cuda_backup
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We replace kernel invocation as follows:

1 kernel name<<<blocks ,
2 threads>>>
3 ( /∗ args ∗/ ) ;

1 BACKUP KERNEL LAUNCH
2 ( kernel name , blocks ,
3 threads , /∗ args ∗/ ) ;

When we rewrite a kernel definition, the macros extend the arguments with
a boolean mask array to log which threads ran previously, and they insert the
code that checks for the interrupts and the code that terminates the entire
block of threads if the interrupt has been received. The BACKUP cudaMalloc
memory wrapper collects the allocated data structures that the kernels need so
that we can transfer them back from the GPU to the host for the purpose of
snapshotting. The macro that wraps the launch of the kernel defines a loop that
launches the kernel, waits for a certain time, sets the interrupt and transfers the
data (captured by BACKUP cudaMalloc wrapper) from the GPU.

For a complete example, please refer to demo directory https://goo.gl/
BKvcxX where we demonstrate how the proposed API applies to an applica-
tion with a kernel that adds two vectors. We provide an original code vecadd-
original.cu and its modified version vecadd-modified.cu that uses our API.

Currently, the API is restricted to applications with a single kernel and only
provides a wrapper for cudaMalloc. Allocations done via cudaMallocManaged
automatically work because they are managed by the unified memory system
which means that data is readily available at snapshot time. Wrappers for the
remaining CUDA allocation functions like cudaMalloc3D and cudaMemcpy2D are
missing. These limitations are only of a technical nature and will be fixed in the
foreseeable future.

3 Experimental Setup

In order to evaluate the proposed mechanism we use a real-world application,
PBOOST [19] and an artificial example. Ideally, it would have been more suit-
able to use an established benchmarking suite such as the Rodinia benchmarks
instead of an artificial example. However, these benchmarks do not run long
enough on our hardware to escape measurement noise and provide conclusive
results. A simple kernel is best to isolate and measure the sources of overhead.
PBOOST is a tool for parallel permutation tests in genome-wide association
studies which concern single nucleotide polymorphism pairs and their associa-
tion with diseases via the combination of their main effects and interactions. On
our system PBOOST runs for about 38 min. The modified version of PBOOST
can be found at https://goo.gl/84pNQs. All the modifications to the code are
implemented using our API.

https://goo.gl/BKvcxX
https://goo.gl/BKvcxX
https://goo.gl/84pNQs
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We also use the artificial kernel in Listing 1.1 to perform an in-depth analysis
of the overheads introduced by our mechanism.

1 g l o b a l void
2 ke rne l (unsigned long long n , unsigned long long ∗ r e s ){
3 unsigned long long x = 0 ;
4 for (unsigned long long i = 0 ; i < n ; i++){
5 x++;
6 }
7 ∗ r e s = x ;
8 }

Listing 1.1. Artificial kernel for evaluating overheads

We deliberately choose such a trivial kernel, so that we get 100% occupancy
on the GPU. All experiments are performed on a AMD Opteron 6376 system
with four sockets running Scientific Linux Release 7.4 (Nitrogen), kernel ver-
sion 3.10.0. The system is fitted with 512 GB of RAM, running at 800 MHz and
an NVIDIA TITAN-XP GPU, which is connected via PCIe x16. The TITAN-
XP can execute 61,440 threads simultaneously using its 30 streaming multi-
processors (SM). For our experiments we use CUDA 9.0 with a driver ver-
sion 384.81. Each application is executed 10 times to eliminate measurement
noise. We report the average execution time and 90% confidence intervals. In
addition, we note kernel configurations in the tripple-chevron CUDA notation:
<<<blocks, threads>>>; where blocks represents the number of blocks of
threads and threads represents the number of threads per block.

4 Evaluation

Figure 3 shows the execution times of PBOOST with an increasing number of
snapshots. The application runs for approximately 38 minutes and the variation
of execution time is within 5 s (0.2%) when performing 0 to 6 interrupts. We
see that in this particular example, the execution time of the application with
our mechanism enabled is the same as that of the vanilla version within the
measurement error.

Despite such a low overhead looking very promising, this result is not con-
clusive. In order to understand the nature of the overheads that our mechanism
really brings, we study them in isolation. We investigate how expensive is it
to do:

1. Conditional checks in each thread
2. Soft interrupts of a kernel
3. Memory transfers

For these experiments we will use the kernel from Listing. 1.1.
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Fig. 3. Absolute runtimes of modified application

4.1 Conditional Checks Overheads

Every thread needs to perform two conditional checks (interrupt and did it
already execute) to determine whether to continue or not, so the goal of this
experiment is to determine the cost of having these extra checks. To avoid also
measuring any overhead that may come from the GPU scheduler, we use a ker-
nel configuration that matches the number of simultaneous threads that can be
executed by the GPU. As the TITAN-XP can execute 61,440 threads simultane-
ously, we use a configuration of <<<60, 1024>>>. The results in Fig. 4a show
that the conditional checks is significant if number of operations, and by exten-
sion runtime, is very small. However this becomes irrelevant for the cases, we
are interested in. Figure 4b shows that the overhead remains minimal for much
larger values of n.

Fig. 4. Overhead of conditional check
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4.2 Interrupt Overheads

In order to examine this overhead, we performed set n = 1.6× 109 with a kernel
configuration of <<<1320, 1024>>>. This configuration is needed to be able
to interrupt the kernel at least 20 times. To be able to interrupt a kernel N
times, at least (N + 1) × s × t threads are required, where s is the number of
SMs and t is the maximum number of threads an SM can execute. No memory
transfers were made. Figure 5a shows the absolute runtime for each interrupt
and Fig. 5b shows the time each interrupt adds to the vanilla execution. We see
that for a runtime of approximately 3 min, each interrupt adds between 34 ms
to 85 ms; the variability of which can be attributed to measurement noise.

Fig. 5. Overheads of soft interrupts. Kernel configuration <<<1320, 1024>>>

Fig. 6. n = 1.6×109. Kernel configuration <<<1320, 1024>>>. Single memory copy
of 11.9 GB made at each interrupt
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4.3 Data Transfer Overheads

To measure this overhead, we set n = 1.6 × 109 with 98.3% (11.9 GB) of GPU
memory allocated. At each interrupt, all GPU allocated memory is transferred
back to the device. The results in Fig. 6 show that having to perform large
memory transfers at each interrupt noticeably increases the overhead.

The first two experiments show that practical overheads of checking a condi-
tional or doing a software interrupt are close to zero. Memory overheads on the
other head, can be quite expensive, but we did not observe them in PBOOST.
The reason for this is that despite the kernel runs for such a long time, it only
uses 213 MB of the GPU memory, which can be copied very quickly.

5 Related Work

CheCUDA [16] and NVCR [10] are presented as checkpoint/restart tools both
of which take a similar approach to GPU fault tolerance. The former works
by hooking into basic CUDA driver API calls to record status changes on the
device, writing those changes into a file at checkpoint time and using this file
to re-initialise the device at restart. NVCR works in a similar way but deletes
all CUDA resources before checkpointing and restores them right after check-
pointing. Both approaches need the kernel to run to completion and depend on
the CUDA runtime to automatically detach itself from the running process and
destroy its context. Unfortunately the CUDA runtime stopped doing this from
version 3.2 and onward when support for 64-bit device side memory space was
added. This is a problem because an existing context at checkpoint time will
have its information captured. Restarting an application with this information
will fail because the context is no longer attached to the device.

A possible way to circumvent the limitation of CUDA’s runtime remain-
ing attached would be to mimic the approach taken by CheCL [17]. CheCL is
implemented in the context of OpenCL and transparently provides checkpoint-
ing capabilities by substituting the OpenCL shared library with its own version.
This allows CheCL to decouple the process from the OpenCL runtime by for-
warding all API calls to a proxy process that executes the real API function.

Virtual machines (VMs) are a viable option to achieve both fault tolerance
and process migration. Along these lines vCuda [9] and GVIM [8] are proposed as
a GPGPU computing solution for applications running on VMs. The advantage
of a VM is that it inherently decouples the application from the GPU hardware
interface thus simplifying the checkpoint step. This means that API calls need to
be intercepted and redirected to the guest OS resulting in large communication
overheads and performance degradation.

CudaCR [14] and VOCL [12] are presented as schemes for soft error recovery
for GPUs and coprocessors respectively. CudaCR captures the GPU state within
the kernel to be able to roll back to a previous state if a soft error occurs. VOCL
provides a transparent virtualization layer between applications and the OpenCL
runtime. This allows the capture of API calls so that they can be replayed if a soft
error occurs. It is worthy to note that CudaCR does address soft errors for long
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running kernels, however in contrast to our work, neither of these approaches
specifically target hardware failures. Approaches mentioned in this section need
to wait for GPU kernels to complete before taking a checkpoint; to the best of
our knowledge none consider the case of a long-running kernel.

6 Conclusions and Future Work

This paper proposes a solution to the problem of checkpointing applications that
use GPU kernels. We present a mechanism that periodically captures a state
of the running GPU kernels. With such a mechanism in place, we can use any
existing checkpointing system to make snapshots of an application, while a GPU
kernel is still running. It is guaranteed by the construction of our mechanism that
any such a snapshot captures enough of a state to safely restore the application.

The key insight of this approach lies in the observation that not all the
threads of the kernel start at the same time. Such a delay makes it possible to
instrument the thread to check for the interrupt and terminate voluntarily if
the interrupt has been received. As we have demonstrated on a real-world and
synthetic examples, the runtime overhead of the proposed mechanism is very
small. We have implemented a library with a compact API which makes our
approach straight-forwardly applicable to existing applications. The implemen-
tation is freely available at BitBucket.

The effectiveness of the proposed approach enables several future directions
of research. First of all, the straightforward nature of our API suggests an auto-
mated instrumentation of GPU kernels should be easily possible. Secondly, we
would like to integrate our approach with an existing checkpointing system. All
we need to do is to make sure that the system makes a snapshot at the time
when we captured the state of a kernel (“Checkpoint” stage in Fig. 2b). The
checkpointing system could also set or change the time we wait after the kernel
launch, so that the snapshotting frequency could be altered.

As our experiments show, the amount of data that is transferred to enable
checkpointing dominates the overall overhead. The amount of data that we cur-
rently copy at every interrupt/kernel restart is a conservative over approxima-
tion. The blocks of results that have been computed do not need to be copied
to the GPU. However, figuring out whether it is safe to copy data partially is
far from trivial. Despite being inspired by the needs of resilience, our interrupt
mechanism has further uses. Fail early scenarios can use our approach so that
GPUs return as soon as possible if the system has already started failing and
a rollback has to occur. It can also be used for fault injection testing on GPUs
which is difficult if kernels run to completion.
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