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ABSTRACT

In this paper we present an optimisation for reference counting

based garbage collection. The optimisation aims at reducing the

total number of calls to the heap manager while preserving the key

benefits of reference counting, i.e. the opportunities for in-place
updates as well as memory deallocation without global garbage

collection. The key idea is to carefully extend the lifetime of vari-

ables so that memory deallocations followed by memory allocations

of the same size can be replaced by a direct memory reuse. Such

memory reuse turns out particularly useful in the context of inner-

most loops of compute-intensive applications. It leads to a runtime

behaviour that performs pointer swaps between buffers in the same

way it would be implemented manually in languages that require

explicit memory management, e.g. C.
We have implemented the proposed optimisation in the context

of the Single-Assignment C compiler tool chain. The paper provides

an algorithmic description of our optimisation and an evaluation of

its effectiveness over a collection of benchmarks including a subset

of the Rodinia benchmarks and the NAS Parallel Benchmarks. We

show that for several benchmarks with allocations within loops

our optimisation reduces the amount of allocations by a few orders

of magnitude. We also observe no negative impact on the overall

memory footprint nor on the overall runtime. Instead, for some

sequential executions we find mild improvement, and on GPU

devices we observe speedups of up to a factor of 4×.
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1 INTRODUCTION

Many modern programming languages use implicit memory man-

agement. Languages such as SISAL [4, 5], Python [10], Swift [18,

27], or Single-Assignment C (SaC) [12] use reference counting to

implement non-delayed garbage collection. The key idea of refer-

ence counting is to associate each data structure with a counter

that keeps track of the number of shared references that exist in

the system. Once the last reference to a data structure is no longer

needed the corresponding memory can be freed. For the price of

maintaining such a reference counter for each data structure, this

approach not only enables earliest possible asynchronous garbage

collection, it also provides an elegant solution to the aggregate

update problem [17]: whenever a reference counter is one, the

corresponding data structure can be updated in place.

Several optimisations to reference counting have been proposed

in the literature. They predominantly focus on avoiding reference

counter maintenance overheads [7, 21, 25, 30] and on maximising

the potential for in-place updates of aggregate data structures [8, 13].

Some other works aim at improving the actual memory handling

process, be it in the context of sequential or parallel executions [19,

31].

This paper proposes a novel optimisation for reference counting

based garbage collection named extended memory reuse (EMR). It
extends the lifetime of memory allocations to avoid sequences of

deallocations and reallocations in favour of a direct memory reuse.

While the overheads of such dual calls to the memory manager on

shared-memory systems usually has little impact on the overall

runtime performance, in the context of accelerator systems, like

GPUs, they can have devastating effects on the overall performance.

Accelerator systems typically have separate memory contexts,

one for the host and one on the accelerator, and all memory man-

agement, including memory allocations on the accelerator, has to

be performed by the host [24]. Any memory deallocation or real-

location that has to happen between two executions on the GPU

requires a control transfer fromGPU to the host and back. Moreover,

the change in allocated memory on the GPU may induce superflu-

ous data-transfers between host and device which are known to be

the primary source for poor GPU performance [14].

The main contributions of this paper are:

(1) Design of a code-transformation that implements the infer-

ence of extended reuse opportunities. We present it as a

series of rewrites for a first-order functional language with

array comprehensions which resembles the core of SaC.

(2) A full-fledged implementation of the proposed optimisation

for the SaC compiler.

(3) Evaluation of the effects of the proposed transformation at

the example of benchmarks from the Livermore Loops [23],

https://doi.org/10.1145/3310232.3310242
https://doi.org/10.1145/3310232.3310242
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3310232.3310242&domain=pdf&date_stamp=2018-09-05


IFL 2018, September 5–7, 2018, Lowell, MA, USA H.-N. Vießmann, A. Šinkarovs, and S.-B. Scholz

Rodinia [6], and NAS [1] Benchmark Suites. We present

the effects of EMR on these benchmarks with respect to the

number of memory operations performed, memory footprint,

and overall runtime for two different architectures: a shared

memory system and a GPU accelerated system.

Our results suggest that the object lifetime extension pattern

that we make use of can be picked up in a wider contexts like static

analysers for languages with manual memory allocations like C.

Specifically, this becomes desirable in the context of GPU or FPGA

accelerator programming using languages like CUDA or OpenCL.

The rest of the paper is organised as follows: in section 2 we

briefly describe the SaC language and explain how reference coun-

ting works within the language by giving examples. In section 3 we

extend on these examples to demonstrate the problem we tackle

and how we intend to solve it. In section 4 we provide an overview

of the code-transformations and what they are meant to achieve.

This is followed by explanations on how the code-transformations

work, with some examples given to demonstrate this. In section 5

we present and evaluate the results from applying the EMR optimi-

sation on various benchmarks. In section 6 we give a discussion on

certain aspects of the optimisation, such as its effect on heap usage

during runtime. In section 7 we present and compare some related

work, and finally in section 8 we give our conclusion and ideas for

future work.

2 BACKGROUND

We start with a brief overview of the SaC language and its refer-

ence counting model. The main goal here is to introduce a large

enough subset of the language so that we can conveniently illustrate

the underlying problem and our solution. For a full introduction

consider [11, 29].

2.1 The Core of SaC

SaC is a first-order functional language with built-in arrays. In SaC,

arrays are predominantly constructed by an array comprehension

construct called the with-loop. In this paper we assume the sole

construct for array construction to be a restricted form of the with-
loop which has the following form

1
:

{ x -> e1 | x < e2 }

where x is a variable and e1 and e2 are expressions. x -> e1 can

be seen as a mapping from indices x to element values e1 which

define the array elements for all its legal indices. The range of legal

indices is delimited by e2 which evaluates to a vector that defines

the shape of the resulting array.

A few instances of such with-loops are contained in our run-

ning example shown in listing 1. Consider line 4, where we use a

with-loop to implement element-wise addition of the 5-element 1-d

arrays a and b. The index iv ranges over the indices {[0],[1],[2],

[3],[4]}, and we compute a 5-element 1-d array c where at every

index iv the value is computed by the expression a[iv] + b[iv].

1
In SaC, a similar syntactical form exists as a notational short-cut forwith-loops named

set-expression [26]. The form we use here can be expanded into a proper with-loop by

applying the following expansion rule:

⟦{ x -> e1 | x < e2 }⟧ = with {(0∗e2 <= x < e2): e1; }: genarray (e2, 0)

The square brackets here denote element selections from a and b,

respectively.

The with-loops in lines 8 and 12 compute rotations of the array

a using the built-in modulo operator denoted by the %-symbol.

Other components of the language are first-order functions and

conditionals. As shown in our running example, we use SaC syntax

for function definitions and function applications. Partial applica-

tions of functions are not supported. Conditional expressions are

restricted to the ternary ?: operator, whose syntax is identical to

the corresponding construct in C. In contrast to full-fledged SaC,

we do not support special syntax for loops. We resort to recursive

functions instead in order to keep our language core concise. The

function stencil in lines 19–25 together with its call in line 15 of

our running example constitutes such a loop. It represents a do-

loop that performs 10 iterations of a two-point stencil with cyclic

boundary conditions.

1 int[5] fun (int[5] a, int[5] b)

2 {

3 / / element−wise add
4 c = { iv -> a[iv] + b[iv] | iv < [5] };

5 print (c);

6

7 / / rotate right by one element
8 d = { iv -> a[(iv-1) % 5] | iv < [5] };

9 print (d);

10

11 / / rotate l e f t by one element
12 e = { iv -> a[(iv+1) % 5] | iv < [5] };

13

14 / / 10 i t e ra t i ons 2 point s t enc i l
15 f = stencil (e, 10);

16 return f;

17 }

18

19 int[5] stencil (int[5] e, int n)

20 {

21 f = { iv -> e[(iv-1) % 5] + e[(iv+1) % 5]

22 | iv < [5] };

23

24 r = n == 0 ? f : stencil (f, n-1);

25 return r;

26 }

Listing 1: SaC code example

2.2 Basic Reference Counting in SaC

Arrays defined by with-loops initially have a reference count of 1.

New references to arrays are generated whenever they are passed as

arguments to abstractions. At that point one reference is consumed

and as many references are generated as there are references to

the formal parameter within the body of the abstraction. Our core

language here supports three forms of abstractions: functions, as-

signments to variables which constitute nested let-constructs, and

with-loops themselves as they replicate their element-expression

for each array element. Built-in operations like +, selection, etc.,
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consume their arguments. At runtime, when the reference count of

an array is decreased to 0, the object is deallocated.

Consider our running example from listing 1 again, we extend it

in listing 2 to show function fun annotated with explicit reference

count operations (e.g. incrc).

1 int WLBc (int[1] iv, int[5] a, int[5] b)

2 {

3 incrc (iv, 1); incrc (a, 0); incrc (b, 0);

4 return a[iv] + b[iv];

5 }

6 int WLBd (int[1] iv, int[5] a) { / ∗ . . . ∗ / }

7 int WLBe (int[1] iv, int[5] a) { / ∗ . . . ∗ / }

8 int[5] fun (int[5] a, int[5] b)

9 {

10 incrc (a, 2); / / 3 references
11 incrc (b, 0); / / 1 reference
12 / / −−−−−− WL c −−−−−

13 incrc (a, 4); / / a s in c with−loop body
14 incrc (b, 4); / / b s in c with−loop body
15 c = {

16 iv -> WLBc (iv, a, b)

17 | iv < [5]

18 }; / / rc ( c ) == 1
19 incrc (c, 0); / / referenced in print−ca l l
20 print (c);

21

22 / / −−−−−− WL d −−−−−

23 / / . . . / / rc (d) == 1
24 incrc (d, 0); print (d);

25

26 / / −−−−−− WL e −−−−−

27 / / . . . / / rc (d) == 1
28 incrc (e, 0); / / referenced in s tenc i l−ca l l
29 f = stencil (e, 10);

30 incrc (f, 0); / / referenced in return
31 return f;

32 }

Listing 2: Example from listing 1 with reference counting

At the beginning of the function we adjust the reference counts

of the formal parameters of fun. Array a is referenced 3 times

and array b is referenced once. As fun on application consumes

its arguments we increment the reference counts of a and b by 2

and 0, respectively. This is because all function arguments have at

least a reference count of 1. After each assignment, the reference

counts of the let-bound variables are adjusted. In our example, all

variables are used exactly once, resulting in increments by 0, i.e. no
adjustments at all. Every with-loop allocates new memory for its

result with a reference count of one.

In lines 10–16 we show the reference counting of the first with-
loop. Each element computation acts like a function call. The con-

ceptual arguments of those functions are the index variable (here

iv) and the relatively free variables (here a and b). Wemake this idea

explicit by abstracting the body of allwith-loops into corresponding
functions WLBc, WLBd and WLBe.

Before starting the computation of the array c, the reference

counts of the relatively free variables are adjusted by the number

of array elements minus one. Within the element computation (the

body of WLBc function), as iv occurs twice in a[iv] + b[iv], we

increment the reference count of iv by 1. Similarly, the reference

counts of a and b are left unmodified as they occur exactly once in

the element expression.

Consider an execution where fun is called with reference counts

of 1 for both a and b. When reaching the with-loop computation

in line 14, the reference counts of a and b have been changed to 7

and 5, respectively. Within each element computation, the refer-

ence counts of a and b are decremented by one at the end of each

corresponding selection. Since we have 5 element computations,

the reference count of a is going to be reduced to 2 and b is going

to be freed directly after the last element selection.

The with-loops in lines 20 and 25 are treated in the same way;

so we have omitted the details in listing 2.

Note here, that in this example the arrays c and d will be freed

immediately after they are printed.

Reference counting for conditionals requires reference count

adjustments of all relatively free variables whenever the individ-

ual alternatives are being computed. A more detailed account of

reference counting in SaC can be found in [12].

2.3 Improved Reference Counting in SaC

The basic reference counting in SaC has been significantly extended

by several optimisations [2, 28]. Our implementation is an extension

of the proposed mechanisms that builds on the memory reuse

optimisations in [12, 13].

As can be seen from the naïve reference counting in listing 2, we

always allocate fresh memory for the result of a with-loop. Looking
at the example of the with-loop in lines 10–16, we can observe

that the array b would actually be an excellent choice for memory

reuse in all those cases where fun is called with an argument b with

reference count 1. Specifically, we could avoid allocating arrays c,

d, and e and reuse the memory of array b instead. Not only would it

avoid an extra allocations and deallocations, it would also improve

the cache locality of the overall code.

To enable such an optimisation we identify arrays that are refer-

enced in the with-loop body that

(1) have the same shape as the with-loop,
(2) have reference count one in the beginning of the with-loop,

and

(3) have a well-behaved access pattern.

Techniques to identify the latter can be found in [12, 13]. We refer

to such arrays as reuse candidates (RCs). Once identified, the reuse
candidates are kept until runtime. Once the with-loop is executed,

the reference counts of the reuse candidates are inspected. As soon

as a reference count of 1 is found the corresponding memory is

reused. Only if no reuse candidate with reference count 1 is found,

is new memory allocated.

3 MOTIVATION FOR EXTENDED MEMORY

REUSE

In the previous section, we have seen how memory can be reused

for computing new arrays from existing ones. While this works
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fine for the first with-loop of our running example, it does not

apply for the three other with-loops in listing 1. There the array c

is deallocated during the call to print in line 5 although an array of

the same size is needed for the computation of the array d in line 8.

Similarly, d is discarded in line 9 just before an array of the same

size is needed in line 12.

The loop function stencil in lines 19–25 exposes a similar pat-

tern. While the argument array e cannot be reused for f, which

is passed into the next iteration, it could serve as memory for the

next instance of f to be computed in the next iteration. If we look

at an unrolled version of the stencil operation we can see exactly

the same situation as in the function body of the function fun:

f0 = { iv -> e[(iv-1) % 5] + e[(iv+1) % 5]

| iv < [5] };

f1 = { iv -> f0[(iv-1) % 5] + f0[(iv+1) % 5]

| iv < [5] };

f2 = { iv -> f1[(iv-1) % 5] + f1[(iv+1) % 5]

| iv < [5] };

/ / . . .

The memory of e can be reused for f1, the memory of f0 can

be reused for f2, etc. Effectively, this would lead to two memory

locations being used for thewith-loop computation in an alternating

fashion.

Our goal here is to achieve the same effect without the need for

explicitly unrolling of the loop. This can be achieved by identifying

loop functions that contain such with-loops and extending their

signatures. For our running example, we aim at an extended stencil

function of the form:

int[5] stencil1 (int[5] e, int n, int[5] f0)

{

f = { iv -> e[(iv-1) % 5] + e[(iv+1) % 5]

| iv < [5] };

r = n == 0 ? f : stencil1 (f, n-1, e);

return r;

}

The extra parameter f0 effectively provides a pointer to memory

that can be reused for the computation of f. In the subsequent

iteration, this memory is provided from the array e whose lifetime

is now extended into the next iteration.

Note here that this completely elides the need to interact with

the heap manager within this loop. In particular in the context

of executions on accelerators such as GPUs we expect to see a

noticeable impact for this optimisation.

In the next section, we provide an algorithmic description which

systematically transforms programs like our running example into

a formwhere memory is being reused within the scope of individual

functions and across loops.

4 EXTENDED MEMORY REUSE

The basic idea for implementing EMR is to extend the idea of reuse

candidates as outlined in section 2.3. Instead of restricting the com-

piler to only use arrays as reuse candidates whose last reference

is within the with-loop body in a suitable way, we would like to

also include arrays that are neither referenced in the loop body

nor within the remainder of the function body. We call such arrays

Extended Reuse Candidates or ERCs for short. Once these are iden-
tified, the idea is to inspect the reference counts of such ERC at

runtime and, similar to the reuse candidates from section 2.3, reuse

their memory in case the reference count is 1.

To do so, we first collect arrays that are of suitable size and

that have been defined prior to the with-loop in question. This

happens in a phase we call ERC inference. Once we have collected
such potential ERCs, we filter out non-suitable candidates in a

second phase named ERC filtering. Finally, we adjust the function
signatures and function calls to the tail-end recursive functions that

represent our loops. We call this phase ERC loop optimisation.

4.1 Overview

Before providing a more formal description of these three phases,

we sketch their intended behaviour by using our running example.

4.1.1 ERC inference. First of all, we annotate every with-loop with

the set of potential ERCs. These are variables that have been defined
before the with-loop, whose shape is identical to that of the with-
loop result, and which are not referenced within the with-loop itself.
For our running example from listing 1, this leads to the following

annotations of the with-loops with RCs and ERCs:

1 int[5] fun (int[5] a, int[5] b)

2 {

3 c = { / ∗ . ∗ / a[iv] + b[iv] / ∗ . ∗ / }; / / RC={b } ERC={ }
4 print (c);

5

6 d = { / ∗ . ∗ / a[(iv-1) % 5] / ∗ . ∗ / }; / / RC={ } ERC={c , b }
7 print (d);

8

9 e = { / ∗ . ∗ / a[(iv+1) % 5] / ∗ . ∗ / }; / / RC={ } ERC={d , c , b }
10

11 f = stencil (e, 10);

12 return f;

13 }

As can be seen, for the with-loop in line 3, b is a RC, as it has a
well-behaved access and is not referenced in the function body any

further. The array a cannot serve as RC in line 3 since it is referenced

later. In the remaining with-loops the array a cannot serve as a RC
due to the access patterns that stem from the rotations.

The ERC inference now traverses the functions top to bottom,

collects the variables that denote arrays of suitable shape and at-

taches those as ERCs to with-loops that are not contained in the

corresponding with-loop body.

4.1.2 ERC filtering. The ERCs inferred by the previous step require
further filtering as the inference tends to over-approximate and

can sometimes pick candidates which are referenced at a later

stage. When an ERC is selected for a given with-loop, from that

point onward it is a reference to the resulting array. If at a later

stage we select the same ERC, we cause a conflict that can lead to

an additional allocation. Consequently, an array that serves as an

ERC for the with-loop in line 9 cannot be used as an ERC for the

with-loops in lines 3 or 6; an array that serves as an ERC for the

with-loop in line 6 cannot be used as an ERC for the with-loop in
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line 3. We achieve this by performing a bottom-up traversal that

filters out those ERCs that are referenced within the remainder of

the function body. Once this is done we pick the first remaining

ERC, provided the with-loop does not have an RC. All other ERCs
are filtered out as well. Then we add the chosen ERC to the set of

variables that are referenced and continue traversing bottom-up.

By picking the first ERC we ensure that the most recently defined

array is always chosen as the ERC, which implicitly minimises the

extension of array lifetimes. For our running example this results

in the following ERC annotations:

1 int[5] fun (int[5] a, int[5] b)

2 {

3 c = { / ∗ . ∗ / a[iv] + b[iv] / ∗ . ∗ / }; / / RC={b } ERC={ }
4 print (c);

5

6 d = { / ∗ . ∗ / a[(iv-1) % 5] / ∗ . ∗ / }; / / RC={ } ERC={ c }
7 print (d);

8

9 e = { / ∗ . ∗ / a[(iv+1) % 5] / ∗ . ∗ / }; / / RC={ } ERC={d }
10

11 f = stencil (e, 10);

12 return f;

13 }

4.1.3 ERC loop optimisation. When applying the traversals ex-

plained so far to the loop function stencil, the with-loop within

that function remains without an RC or ERC since there simply is

no array that possibly can be reused. The task of this phase is to

identify with-loops without RCs and ERCs within loop functions,

invent new identifier names, and add these identifiers as ERCs to
the corresponding with-loops. This traversal also adjusts the func-

tion signatures of the loop functions as well as all applications of

these functions accordingly. For our running example we obtain

for the loop function:

1 int[5] stencil (int[5] e, int n,

2 int[5] f0 / ∗ Fresh variable ∗ /)
3 {

4 / ∗ RC={ } , ERC={f0 } ∗ /
5 f = { / ∗ . ∗ / e[(iv-1) % 5] + e[(iv+1) % 5] / ∗ . ∗ / };

6

7 r = n == 0

8 ? f

9 : stencil (f, n-1, e / ∗ shape (e) == shape (f0 ) ∗ /);
10 return r;

11 }

Note that the choice of variable to expand the recursive function

call only needs to match the type and shape of what is needed and

it must not be used as existing argument within the recursive call.

In what order this variable is created in the function body does not

matter.

After all loop functions are extended, we need to extend their

call sites as well. Given the type and shape information of the

newly added function arguments, we can either find variables in

the current context or create new arrays before the function call.

For our example, we obtain:

9 / / . . .
10 f0 = { iv -> 0 | iv < [5] };

11 f = stencil (e, 10, f0);

12 / / . . .

4.2 Algorithmic Formulation of the

Transformations

We base our transformations on the language core delineated in

section 2. More specifically, we make the following assumptions:

(1) a program is a list of functions where each function consists

of a return type, arguments and body;

(2) the body of each function is a list of assignment statements in

static single assignment form and a single return statement

at the end of that list (note that functions like print assign

the unit type value to some temporary variable);

(3) the right-hand side of each assignment is either a with-loop,
a function application, or a conditional (all conditionals are

in the form x ? e1 : e2 where x is a variable of type bool and

e1 and e2 are expressions);
(4) loop functions are tail-recursive functions where the recur-

sive call has been identified;

Note here, that although this core language is designed to reflect

SaC, the only SaC-specific construct is the with-loop. Conceptually,
this language construct can be replaced by any other language

construct that creates a reference-counted data structure. With

such a modification our transformation is immediately applicable

to any other programming language that uses reference counting

as the garbage collection mechanism.

4.2.1 ERC Inference. The ERC inference is shown in algorithm 1. It

expects a function definition (Fd ) and computes ERC annotations for

all with-loops within that function. We represent these annotations

as EC, a mapping from expressions to variable lists.

During the top-down traversal of the function body we create a

local variable list C which we use to store all candidates found so far.

We define a local recursive functionT that operates on expressions:

forwith-loops it computes the corresponding ERCs; for conditionals
it recursively inspects both branches. In the former case we filter

the current C by removing all the variables that are free in the

body of the with-loop or whose shapes do not match the shape

of the return value of the with-loop. As conditionals cannot have
local variable bindings, we simply annotate the with-loops in the

individual branches with the ERCs.
The actual top-down traversal is defined in lines 11–12. We it-

erate through all assignments in Fd , and apply T to expr looking
for assignments made by either with-loops or function applica-

tions. Once done with the expression of the assignment, we add

the defined variable var to the set of candidates C. Once the entire

function body has been traversed, all found ERCs are stored in EC
which we will refer to in the subsequent transformations.

4.2.2 ERC Filtering. The ERC filtering is shown in algorithm 2. It

relies on mappings EC and RC which hold the ERCs inferred by



IFL 2018, September 5–7, 2018, Lowell, MA, USA H.-N. Vießmann, A. Šinkarovs, and S.-B. Scholz

Algorithm 1: Extended Reuse Candidate Inference

Input: A function definition Fd
1 begin

2 Let EC be an empty mapping

(expression 7→ variable list )

3 Let C be the found candidates of Fd
4 function T (expr) is
5 switch expr do
6 case expr is a with-loop do

7 ERC = Filter(

x ⇒ x < FreeVariables(expr)
and Shape(x) == Shape(expr), C)

8 Add expr 7→ ERC to EC

9 case expr is a conditional x ? e1 : e2 do
10 T (e1); T (e2)

11 foreach (var = expr ) in Fd do /* top-down */

12 T (expr); C = var ++C

Output: The updated mapping EC

Algorithm 2: Extended Reuse Candidate Filtering

Input: A function definition Fd
A mapping EC (expression 7→ variable list )
A mapping RC (expression 7→ variable list )

1 begin

2 Let VR be the return value of Fd
3 function T (expr) is
4 switch expr do
5 case expr is a with-loop do

6 ERC = Filter(x ⇒ x < VR, EC[expr ])
7 V = FreeVariables(expr body)
8 if RC[expr ] = � ∧ ERC , � then

9 EC[expr ] = ERC0

10 V = ERC0 ∪V

11 else

12 EC[expr ] = �

13 return V

14 case expr is conditional x ? e1 : e2 do
15 return T (e1)++T (e2)

16 otherwise do

17 return FreeVariables(expr)

18 foreach (var = expr ) in Fd do /* bottom-up */

19 VR = T (expr)++VR

Output: The updated mapping EC

algorithm 1 and RCs for all expressions, respectively. As a result of
this bottom-up traversal, the mapping EC is being updated.

During the traversal, a list of referenced variables VR is main-

tained which is initialised with the function’s return value. This

list is used to do the actual filtering of ERCs for with-loops. Simi-

lar to the previous algorithm, we define a local function T which

we map over all assignments in a bottom-up fashion (lines 18–19).

When encountering a with-loop, we first filter out all ERCs that
are referenced in the code below the current assigment (line 6). We

then collect the free variables contained in the with-loop body inV
which we will append to our global listVR once we are done with

the with-loop. If our filtering of EC[expr ] left an ERC and there

is no RC, we pick the first ERC, update EC[expr ] accordingly, and
we add it to the list of referenced variables in V . Otherwise, we

set EC[expr ] to empty. Upon return of T the variables referenced

in the with-loop including the remaining ERC contained inV are

added to VR before continuing with the bottom-up traversal.

4.2.3 ERC Loop Optimisation. ERC loop optimisation is shown in

two algorithms, algorithm 3 and algorithm 4. This split is purely

for presentational purposes as we describe our algorithms on a

per-function basis and ERC loop optimisation requires changes of

two functions, the actual loop function and the function that calls

the loop-function. The former is described in algorithm 3 and it has

to happen before the corresponding loop function call is modified

as described in algorithm 4.

Transformation of Loop Functions. This top-down traversal u-

tilises the mappings EC and RC for ERCs and RCs for each with-
loop. Similar to the previous algorithms, we map a local function

T successively on all assignments of the function Fd , as shown in

algorithm 3. We use a list TR of variable-expression pairs to store

fresh variables that will be used as ERCs for with-loops without
RCs or ERCs, if possible. When we come across a with-loop, we
check if it has any RCs or ERCs. If it has none, we create a variable
for a new array with the same type and shape as the return value of

the with-loop and put this jointly with a reference to the with-loop
into TR. After the body of Fd is traversed, we use TR to extend

the Fd arguments with the variables in TR.

When traversing the recursive call, we iterate over TR and

search the body of Fd for the variables of the corresponding type

and shape that can be used as arguments of the extended function

call. This search happens in the FindMatching helper function. If the

search is not successful, we elide the variable-expression pair from

TR. Otherwise, we append the found variableNa to the arguments

of the function application and we add the variable from TR to

ERCs of the with-loop referred in the variable-expression pair of

TR. This way, we make sure the number of added arguments to

the recursive call matches the number of entries in TR.

Adjustment of Loop Function Calls. The adjustment of the exter-

nal loop function calls is shown in algorithm 4. It assumes that all

loop functions have already been adjusted through algorithm 3.

Again, we iterate through the assignments within the body of

Fd again searching for a function call to a loop function. Once

found, we check whether the function signature has changed dur-

ing the application of algorithm 3. If it has, we use a helper function

CreateArgs to create the missing number of arrays of the right type

and shape and append these to the loop function call.
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Algorithm 3: ERC Loop Optimisation for Loop Functions

Input: A loop function definition Fd
A mapping EC (expression 7→ variable list )
A mapping RC (expression 7→ variable list )

1 begin

2 Let TR be a empty list tuples (variable × expression)

3 function T (expr) is
4 switch expr do
5 case expr is a with-loop do

6 if EC[expr ] = � and RC[expr ] = � then

7 Vrc = fresh variable to store expr
8 TR ++ [(Vrc , expr )]

9 case expr is a function application do

10 if expr is the recursive call then
11 foreach (Vrc , expr

′) in TR do

12 Na = FindMatching(Vrc , Fd )
13 if Na = � then

14 Delete (Vrc , expr
′) from TR

15 else

16 Append Na to arguments of expr
17 EC[expr ′] = Vrc

18 case expr is conditional x ? e1 : e2 do
19 T (e1); T (e2)

20 foreach (var = expr ) in Fd do /* top-down */

21 T (expr)

22 foreach (Vrc , expr
′) in TR do

23 Append Vrc to arguments of Fd

Output: The updated mapping EC
The updated function Fd

Algorithm 4: ERC Loop Optimisation - Adjust Loop Calls

Input: A function definition Fd
1 begin

2 function T (expr) is
3 switch expr do
4 case expr is a loop function f application and

expr no. arguments < f no. arguments do
5 Na = CreateArgs(∆ no. arguments)

6 Append Na to arguments of expr

7 case expr is conditional x ? e1 : e2 do
8 T (e1); T (e2)

9 foreach (var = expr ) in Fd do /* top-down */

10 T (expr)

Output: The updated function Fd

5 EXPERIMENTAL EVALUATION

We implemented the EMR optimisation in a feature branch of the

sac2c compiler based on sac2c 1.3.2. We evaluate the effects of EMR

on a variety of benchmarks from different benchmark suites which

represent various types of computations.

5.1 Experimental Setup

The benchmarks are compiled to run both sequentially on an AMD

Opteron 6376 and on an NVIDIA K20 GPU (driver version 384.81)

using GCC 4.8.5 and Cuda 9.0, respectively. Memory measurements

are generated using compiler-instrumented SaC code through sac2c

flag ‘-profile m’ as well as NVIDIA’s profiling tool nvprof. Run-

time measurements are wall-clock times observed by the GNU time

command. We present the average of five runs, and show the ex-

treme values we found as well, in order to obtain an idea of the

measurement noise.

The benchmarks include basic ones such as matrix multiplica-

tion and matrix relaxation. We also use a kernel from a real-world

application by the British Geological Survey (BGS) called the Global

Geomagnetic Model, which was translated to SaC and evaluated

in [32]. Additionally we include benchmarks
2
from the Livermore

Loops suite [23], the Rodinia Benchmark suite [6], and the NAS Par-

allel Benchmark suite [1]. A list of benchmarks and their respective

problem sizes is given in table 1.

Some of the benchmarks we use have several different imple-

mentations, and we indicate these by adding suffixes to their names.

For implementations that closely reflect their C counterpart, which

use no with-loops, we use C. The suffix APL indicates an APL-like

implementation that uses SaC implementations of APL operators.

The suffix N indicates a naïve SaC implementation whereas the

suffix SC is a more optimal SaC implementation. Additionally, for

the Rodinia Pathfinder benchmark we use two implementations as

one of them performs better on a GPU than on a shared-memory

architecture [3]. These are suffixed with nCD and CD, respectively.
Our first experiment analyses the overall impact of EMR on the

number of memory allocations that are being performed during

the lifetime of the chosen benchmarks. Figure 1 shows for each

benchmark the total number of allocations made in four different

columns: the first two columns show the number of allocations

during sequential executions, first without EMR then with EMR be-

ing applied. The second set of columns presents the corresponding

numbers for executions on the GPU.

Note here that the y-axis is a logarithmic scale. For the first

benchmark, the BGS-Kernel, we can see that for both, sequential

execution and execution on the GPU, the number of memory allo-

cation shrinks by more than two orders of magnitude, from roughly

2.5 × 10
6
to 10

4
.

We observe that 10 out of the 37 benchmarks benefit from EMR.
The other 27 benchmarks essentially remain the same or have small

improvements only. 9 out of the 10 benchmarks that benefit from

EMR have improvements of more than 2 orders of magnitude. In

8 out of the 10 cases the number of allocations decreases to levels

that are very similar to those of manually written code that have

explicit memory management.

Only Gauss-Jordan seems to benefit less significantly. Closer

inspection reveals that, nevertheless, in the sequential case the

2
More information on the SaC implementations of the Livermore Loops, Rodinia

Benchmarks, and the NAS Parallel Benchmarks (as well as other benchmarks) are

available at https://github.com/SacBase.

https://github.com/SacBase
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Suite Benchmark Problem Size

Livermore Loops Loop01 100001 vector

Loop02 100001 vector

Loop03 100001 vector

Loop04 10001 vector

Loop05 100001 vector

Loop07 100001 × 64 array

Loop08-split 1001 × 64 array

Rodinia Benchmarks Back-propagation 65536 input units

Hotspot 1024 × 1024 grid

Kmeans 34 features, 5 clusters

Leukocytes 640 × 480 image, 88 cells

LUD 2048 × 2048 matrix

Needleman-Wunsch 24 × 24 grid

Particle Filter 10 frames at 128 × 128,

1000 particles

Pathfinder 100 × 512000 grid

SRAD 2048 × 2048 matrix

NAS Parallel Conjugate Gradient 14000, 75000, and 150000

Embarrassingly Parallel 2
24

Multigrid 128
3

Other Matrix Multiplication 1000 × 1000 matrices

Matrix Relaxation 10000 × 10000 matrix

Gauss-Jordon 500 × 500 matrix

BGS Kernel 1000 × 1000 matrix

Table 1: Benchmarks and their Problem Sizes

number of allocations is reduced to 50% of the unoptimised version

and for the GPU case, the number of allocations is reduced by 30%.

The fact that we see different effects for the two architectures has

two reasons: Firstly, we onlymeasure thememory allocations on the

machine that executes the data-parallel kernels. Consequently, the

GPU figures are potentially smaller. Secondly, we perform different

code optimisations depending on the target platform which may

impact the number of intermediate arrays materialised in memory.

In this context, two benchmarks stick out: Relax-Expo only gains

on the sequential platform and the Rodinia implementation of

Needleman-Wunsch benefits on the GPU only. In the case of Relax-

Expo, the reason for this behaviour lies in the use of a reduction

operation in the innermost loop which cannot be computed on

the GPU platform but must be done on the host. This prevents the

application of EMR, thereby leading to significant communication

between the host and the GPU device. In the case of Needleman-

Wunsch, a variance in the applied optimisations is responsible for

the difference in effectiveness of EMR.

5.2 Impact of EMR on Memory Pressure

While the total number of allocations gives us an idea of how many

calls to the heap manager could be eliminated, it is not clear how

relevant these are in terms of the sizes of memory allocations that

could be avoided. In order to quantify this aspect, we measured

the sum of all memory allocation requests. Figure 2 shows these

numbers, again using a logarithmic scale. For these results, we only

show the numbers for the sequential execution in order to make

sure that we capture all allocations rather than only those on the

architecture where the data-parallel computation is being executed,

as is the case with using a GPU.

Here, we can observe that all benchmarks where benefits were

found in terms of the total number of allocations, also benefit by a

reduction to the total amount of memory allocation requests. The

reductions are typically bigger than 2 orders of magnitude. An

excellent example is the Livermore Loop 8, where the total sum of

allocations shrinks by almost 6 orders of magnitude from 380GB

down to 500KB. This suggests that the optimisation of innermost

loops is effective in these examples.

Another interesting aspect is the observation that the NAS Con-

jugate Gradient actually benefits from EMR as well, which was not

evident from the total number of allocations. From this experiment

we learn that the total amount of memory that is requested by NAS

CG is cut by roughly a factor of 4.

5.3 Impact of EMR on the Runtime

After verifying that EMR actually reduces the number of memory

allocations and that these are of relevant size, we investigate the

impact of EMR on the runtime for both architectures.Our measure-

ments are presented in fig. 3 which shows the speedup of EMR for

all benchmarks on both architectures. The baseline for both archi-

tectures is the corresponding unoptimised runtime. The horizontal

bars indicate the maximum and minimum speedups obtained from

the maxima and minima of 5 runs each.

The first observation we can make is that the runtime gains

are mainly realised on the GPU platform. This does not really

come as a surprise as runtime experiments with our GPU back-

end triggered this line of research in the first place. The need to

perform allocations and deallocations of GPU memory from the

host has a very noticeable effect and the change of memory often

also generates the need for superfluous data-transfers between host

and device. 7 out of the 9 applications that benefited in terms of

memory allocations on the GPU show speedups between a factor

of 2 and a factor of 4 against the unoptimised versions.

The two applications that do not benefit on GPUs despite savings

in terms of memory allocations are Gauss-Jordan and Rodinia’s

Pathfinder. For these two examples the optimisations apply to parts

of the application that are not the main hotspots. Additionally, we

observe a slowdown in Relax-Expo although the overall allocations

in the GPU didn’t decrease. As previously mentioned this is due to

the additional communication caused by a reduction operation.

Finally, we observe some speedups for the sequential CPU ex-

ecutions as well. 4 of the 10 applications that benefit from fewer

memory allocations expose performance gains between 10% and

50%.

5.4 Impact of EMR on the Memory Footprint

Our final experiment concerns the memory footprint of the bench-

marks. Since EMR extends the lifetime of variables it can potentially

lead to an increase in the maximum of memory that is allocated

at some time during execution. Our measurements indicate that

none of the examples suffered from any increment of the memory

footprint.

6 DISCUSSION

The evaluation in the previous section shows that EMR decreases

the number of memory allocations by several orders of magnitude

for more than a quarter of the compute intensive kernels we inves-

tigated. Most of these come down to levels of allocations that are

similar to what codes with hand-written explicit memory manage-

ment would look like. About half of the examples we investigated
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Figure 1: Allocation Count (normal vs. optimised)
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Figure 2: Total Memory Allocation Requests for sequential Target (normal vs. optimised)
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Some of the benchmarks have more than one implementation-style. These alternatives are marked

with suffixes: -SC for SaC, -N for naïve SaC, -APL for APL, -C for C/C++.
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do not benefit EMR simply because the pre-existing reuse analysis

explained in section 2.3 already brings down the allocations to the

hand-written level.

An analysis of the remaining quarter of applications identifies

two main reasons why deallocations and subsequent allocations

remain within innermost loops.

The first reason is that some of the benchmarks are written in a

C-style using for-loops rather than with-loops. For those cases to
benefit from EMR, we need an extension of EMR to deal with these

loops in the same way as we deal with with-loops. While this is

conceptually easy, given that the underlying operation is a scalar

modification of the array, the implementation effort that would be

required is non-trivial. Since most SaC programs are defined in

terms of with-loops whenever possible, we decided to leave this

extension as future work.

The second reason lies in the fact that several of our benchmarks

operate on differently sized arrays within the innermost loops. Ex-

amples for these are Gauss-Jordan and Conjugate Gradient. Trying

to capture these cases poses a bigger challenge. It would require the

memory system to allow memory chunks to be larger than what is

strictly needed at allocation time. This immediately increases the

potential danger of memory footprint increases. Furthermore, in

case of growing memory demands, it would require further analy-

ses to predict the maximummemory need over the lifetime of loops.

Given these major challenges and it not being clear whether these

applications would benefit significantly, support for varying-size

memory reuse remains outside of the scope of this paper.

Though the evaluation of EMR shows improvements and effec-

tiveness throughout, two aspects remain as possible concerns. The

first relates to the way ERC filtering is done and the second relates

to the change of memory footprint of applications.

6.1 Choice of Extended Reuse Candidates

The filtering of ERCs from section 4.2 currently picks the most

recent possible candidate. While our experimentation shows that

this works well in practice, in theory, this can lead to sub-optimal

choices. If we havemore choices thanwe need for memory reuse the

choice of the first candidate may undermine the potential success

of memory reuse. Consider the following example:

int[10] strange (int[10] a, int[10] b)

{

c = { iv -> 0 | iv < [10] };

return c;

}

Here, after inference and initial filtering, we have ERCs a and b to

choose from. Let us assume EMR has chosen b, if it turns out at

runtime that the reference count of a is 1 and that of b is 2, we forgo

the opportunity for reuse. While it would be possible to maintain

both choices until runtime in this case, a slight variation of the

example shows that this cannot be done in general. Consider this

variant:

int strange(int[10] a, int[10] b)

{

c = { iv -> 0 | iv < [10] };

d = { iv -> 1 | iv < [10] };

r = f (c, d);

return r;

}

Now let us assume we would keep both, a and b, as ERCs for both
with-loops. Furthermore, let us assume a and b at runtime both

come in with a reference count of 1. If the with-loop for c chooses

to reuse a, then after the computation of c, array c will have a

reference count of 1. Since c reuses a, an inspection of the reference

count of a which conceptually is no longer exists will still yield 1.

From the perspective of the with-loop that computes d this suggests

that it can use a for memory reuse as well which would simply be

wrong.

Consequently, we either need to establish a mechanism that

communicates the choice made by the first with-loop to the second

with-loop, or we need to ensure that the sets of ERCs after filtering
are disjoint. Our proposed approach opts for the latter. We consider

loosing out on options in situations like our first example here less

of a concern since, in the worst case, it only results in the same

reuse behaviour as without using EMR in the first place.

6.2 Memory Footprint

By reusing memory we increase the lifetime of allocated memory.

This potentially translates into a larger utilisation of memory over

the runtime of the program. Consider the following example:

{

/ / . . .
c = { iv -> 0 | iv < [1000] };

print (c);

d = { iv -> 1 | iv < [1001] }

print (d);

e = { iv -> 2 | iv < [1000] };

print (e);

/ / . . .
}

Assuming that we have no further references to the arrays c and

d, compilation without EMR would result in a memory footprint

of this code snippet of 1001×sizeof (int). Using EMR, this figure
increases to 2001×sizeof (int). If we construct this within a non-

tail-end-recursive function, we can construct an example where

the footprint increases linear with the number of recursive calls:

int elephant (int n)

{

c = { iv -> 0 | iv < [1000] };

print (c);

res = n == 0 ? 0 : elephant (n-1);

e = { iv -> 2 | iv < [1000] };

print (e);

return res;

}

Here the memory footprint of the function elephantwithout EMR is

constant while the application of EMR renders thememory footprint

linear to the value of the parameter n as all instances of the bodywill

keep the memory allocated for c for reuse in e while the recursive

calls happen.
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Although we have not seen this effect in any of the examples we

ran, it would be better if we could rule out such a memory footprint

increase by construction. One way to tackle this problem would

be to rule out all ERCs whose scope would need to be extended

across any code that potentially allocates memory. Unfortunately,

this would rule out almost all examples, even the most simple ones.

The reason is that we cannot guarantee that a function call such

as print (a) does not allocate some memory after deallocating the

array a. This would require sophisticated analyses and might still

turn out to be too conservative in many practical cases.

7 RELATEDWORK

Most of the literature that deals with improving the performance of

reference counting based garbage collection focuses on decreasing

overheads or improving the inference of in-place update opportu-

nities.

In the work by Park and Goldberg [25], the authors introduce

a compile-time based analysis to track the lifetime of references.

With this information, the authors can determine points within the

code where a reference counter need not be updated. For instances,

when a reference is made and then quickly discarded before the

total number of references for the memory object reaches zero. By

avoiding these reference counter updates, the author’s analysis

reduces the runtime overheads of reference counting.

Shahriyar et al. [30] propose a solution to make reference count-

ing more amenable to high performance environments. In the con-

text of Java, they looking at an existing reference count implemen-

tation that uses cyclical garbage collection. They perform a series

of analyses looking at intrinsic properties of the reference counting

mechanism such as counter storage and reference count operations

at runtime. From this they introduce and implement several opti-

misations which, a. change how memory objects are tracked for

cyclical garbage collections, and b. lazily allocate memory objects

at the point where their counter is initially incremented. Their ex-

periments demonstrate a positive speedup for their optimisations.

For GPU based applications, reference counting can offer a pos-

sible way to handle communication between the host and GPU

device, as is done by Jablin et al. [19]. Here the authors introduce

a runtime-library and serious of code-transformations that they

call the CPU-GPU Communication Manager. The runtime-library

provides wrappers for malloc and free which do reference count-

ing, and the code-transformations move communication primitives

around to minimise communication. For a set of benchmark, the

authors solution results in speedups.

Outside of reference counting based garbage collection, other

techniques exist which try to reuse heap allocated memory. For

instance Hamilton and Jones [16] introduce a compile-time based

solution for a functional program that searches the code for in-place

update opportunities. They do this by applying necessity analysis

to determine which parts of a list are needed and where. Whenever

they find a list part that has no further necessity, that list part can

be safely reused.

Similarly, Kågedal and Debray [20] extend on this idea in a single-

assignment context. They provide a code-transformation that intro-

duces runtime-time primitives to the code that either perform a new

allocation or do an in-place update. Their code-transformation is

able to deal with iterative constructs, and canmove copy-operations

out of inner loops. Their experiments demonstrate large speedups

with this technique.

Alternatively, Hage and Holdermans [15] do not do any compile-

time analysis but instead introduce a new construct to a lazy func-

tional programming language. The construct is used to mark oppor-

tunities for memory reuse, and what structure to use for this. They

provide a set of semantics and type rules to ensure that reuse only

occurs when it is safe to do so. Lee et al. [22] do something similar

for a ML-like functional language. Here though they perform a

static memory analysis, after which the inferred information from

this is used to place free primitives which destructively update

nodes in a list.

8 CONCLUSION AND FUTUREWORK

In this paper we propose a novel compiler optimisation to increase

memory reuse. One of the main insights that made this work pos-

sible is the observation that small increases in the lifetime of an

object offers large opportunities for memory reuse.

We implement the proposed optimisation in the context of the

SaC compiler. The underlying memory management of SaC is

based on reference counting. This makes the entire analysis easier,

but in no way restricts us to either SaC or reference counting to

apply the proposed technique in other contexts.

We evaluate the effect of the proposed transformation by running

a set of 37 benchmarks on CPUs and GPUs. Most of benchmarks

come from Livermore Loops, Rodinia and NAS benchmark suites

which are typically used when evaluating high-performance com-

pilers.

In our experiments we look for changes in the number ofmemory

allocations, the amount of totally allocated memory and runtime

performance. On all the three fronts the majority of benchmarks

show either no changes or significant improvements. In 8 bench-

marks, the number of memory allocations comes down by several

orders of magnitude, ending up close to what we might find in

hand-written codes. The runtime performance on GPUs for six

benchmarks improves between 2× to 4×while only one benchmark

shows a slowdown when running on a GPU due to the interplay of

EMR with the code generation scheme for reductions on GPUs.

We also see some improvements for executions on CPUs albeit

on a more moderate level leading to speedups between 10% and

50%.

The observed results suggest that the first step towards better

memory reuse is successful. At the same time this opens up a lot of

opportunities for future work.

There are two main directions of the future work we would like

to pursue. First, we would like to further improve the applicability

of EMR. As explained in section 6, our optimisation is limited to

the case where we are dealing with identical array sizes. It just

naturally happens that in high-performance codes data objects of

the same size are used over and over again. If this is not the case, it

would be desirable to develop some form of cost model that allows

an extended version of EMR to decide whether to reuse memory

that is larger than needed or to allocate more memory than needed,

just for later reuse.
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Secondly, we believe that the underlying memory reuse pattern

that we build on can be used in other contexts. For example we

could envision a static analyser for languages with explicit memory

allocations, e.g. C/C++ family. In our experiments we have seen that

memory reallocation is relatively cheap on CPUs, but on GPUs it

can have a significant overhead. Furthermore, memory allocations

on GPUs are always done from the host, and they cannot be done

asynchronously. So, given a CUDA/OpenCL program where deallo-

cation/reallocation of the same size happens between the kernels,

we can apply our mechanism and replace the free (x); y = malloc

(sizeof (x)) with y = x.

At the same time, languages like C++ have smart pointers, some

of which use reference counting which makes our technique imme-

diately applicable.

Finally, explicit lifetime annotations in Rust may be used to

manually control the lifetime of thememory object.We can envision

a static analyser that identifies the cases that are described in the

paper, and uses lifetime annotations to implement the proposed

reuse technique.
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