
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2016; 28:2092–2119
Published online 18 May 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3501

SPECIAL ISSUE PAPER

Type-driven data layouts for improved vectorisation

Artjoms Šinkarovs*,† and Sven-Bodo Scholz

School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK

SUMMARY

Vector instructions of modern CPUs are crucially important for the performance of compute-intensive algo-
rithms. Auto-vectorisation often fails because of an unfortunate choice of data layout by the programmer.
This paper proposes a data layout inference for auto-vectorisation that identifies layout transformations that
convert single instruction, multiple data-unfavourable layouts of data structures into favourable ones. We
present a type system for layout transformations, and we sketch an inference algorithm for it. Finally, we
present some initial performance figures for the impact of the inferred layout transformations. They show that
non-intuitive layouts that are inferred through our system can have a vast performance impact on compute
intensive programs. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the last decade, vectorisation became an important research topic again, as most of the modern
CPUs grant vectorisation capabilities by means of single instruction, multiple data (SIMD) exten-
sions [1]. Classical research into auto-vectorisation focuses on the optimisation of loop nestings [2].
Data-independent operations within such loop nestings are identified; the loop-nestings as well as
the order of operations within the loop nestings are reorganised to match pre-defined vectorisation
patterns, typically sequences of identical arithmetic operations within loops. For vectorisation to be
effective, such subsequent operations need to work on data that are adjacent in memory. Otherwise,
loading/storing overheads in most cases outweigh any possible performance gains from using SIMD
operations. Furthermore, vectorisation only yields a substantial benefit if it can be applied within
loop nestings, preferably within the innermost loops. As a consequence, classical auto-vectorisation
fails to deliver substantial performance improvements whenever loop nestings cannot be re-arranged
to match the layout of the data structures that are being computed on.

In this paper, we propose a novel approach towards program vectorisation: rather than focusing
on a reorganisation of loop nestings, we suggest a reorganisation of data layouts to enable vectori-
sations. Key to this approach is a program analysis for inferring suitable data layouts. Based on this
inference, a subsequent program transformation followed by classical auto-vectorisation achieve the
overall goal.

Data layout inference comes with several challenges: most importantly, we have to make sure that
any new layout can be accommodated by means of a semantics preserving program transformation.
Languages such as C give guarantees on how data are being stored in memory that we need to
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TYPE-DRIVEN DATA LAYOUTS FOR IMPROVED VECTORISATION 2093

observe. Interfaces of modules need to be preserved, as well as potential effects that result from the
sharing of data or code.

Another core challenge lies in the identification of suitable data layouts. The theoretically very
large number of possible layouts for any given array needs to be narrowed down to a manageable
size. At the same time, we need to ensure that layouts that enable very good vectorised performance
stay in this set. Further challenges arise from the differences in the executing hardware. They impact
directly the way code can or should be vectorised; consequently, they also impact the choice of
data layouts.

Putting all the mentioned challenges together, we get a rather complex vectorisation framework.
We decompose it into smaller interrelated parts and study them separately. In [3] we have identified
the necessity to have a way to express vectorisation explicitly in a portable way. In this paper, we
focus on the challenge of identifying suitable layout combinations that enable auto-vectorisation.
In [4], we demonstrate transformations that have to follow after the inference is performed and prove
that semantics of transformed programs is being preserved. We study first experimental results at
the end of this paper; however, extensive experimental evaluation is future work.

We propose a type inference that identifies data layouts suitable for vectorisation. A functional
core language serves as the basis for our formalisation. It constitutes a strip-down version of the
programming language SAC [5], which we use as a vehicle for our experiments and implement the
inference. Essential features of a functional language that our system depends on are the follow-
ing: pure functions, n-dimensional arrays as first class citizens, data parallel loop nests expressed
using an explicit syntactical construction and memory management being fully implicit to allow
adjustments of data layouts.

The layout inference identifies ideal layouts (with respect to SIMD vectorisation) for each indi-
vidual loop nesting, then employs representational changes whenever necessary and transforming
the overall program. We provide a solution to the separate compilation problem by utilising the
overloading capabilities of SAC. This enables code adaptations at the calling site without making
representational changes inevitable.

We use the N-body problem as a case study throughout the paper. It nicely demonstrates the dif-
ficulties when attempting the classical approach to vectorisation, and it also shows the effectiveness
of our proposed approach. Finally, we present some initial performance measurements that show
substantial speedups even in the presence of multi-threaded executions.

The paper is structured as follows: In the next section, we introduce our core language, a stripped-
down version of SAC. Section 3 introduces our running example in that language, and it discusses
the key ideas of our approach at it. Section 4 provides a formal presentation of our type system, and
Section 5 describes an algorithm for inferring the layout types and applies it to one of the functions
of the N-body example before Section 6 shows the effect of these transformations on the execution
times of our running examples. Related work is presented in Section 7 before Section 8 concludes.

2. CORE PROGRAMMING LANGUAGE

The inference described in this paper is based on a functional language called SAC-�, which is a
stripped down version of SAC, as described in [6]. The main reason we are not using the full version
is to make our presentation and reasoning simpler; however, the implementation of the inference
uses full-fledged SAC.

The choice of a functional language as input language might require some clarification, as most
of the existing high-performance codes are written in imperative languages like C or Fortran, which
at the first glance, makes our work inapplicable. Using an imperative language as input comes with
a large number of challenges, all of which are orthogonal to the core problem we are trying to solve.
One would have to provide a rather complex program analysis to identify iteration-independent loop
nests, prove that inner functions are pure (otherwise we will not be able to transform them) and
deal with duality of arrays and pointers in C. Furthermore, data layouts of arrays in C are fixed
to row-major representation; in case of separate compilation, newly inferred data layouts will have
to be propagated outside the modules. Finally, the lack of type safety and the presence of explicit
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2094 A. ŠINKAROVS AND S.-B. SCHOLZ

Figure 1. The syntax of SAC-�.

flow-control and low-level operations potentially limit the applicability of our approach. A lot of
research effort is being spent to overcome many of those hardships, but we still do not have a unified
solution. However, most of the modern C/Fortran compilers in their optimisation cycle perform a
number of passes like transformation to single-assignment form, building a control flow graph, and
so on, which transform the original program into the form that is very similar to the formalism we
introduce. If we add polyhedra analysis [7] to identify loop-independent iterations and link-time
optimisations (to get hold of full program), our technique should be applicable in the imperative
setting as well. SAC-� can be seen as internal representation of imperative programs.

The language contains only the bare essentials of the SAC language adjusted to a �-calculus style
in order to facilitate a more concise description of our techniques. Figure 1 shows the syntax of our
core language.

As in full-fledged SAC, our stripped down version consists of a set of potentially, mutually recur-
sive function definitions and a dedicated goal expression (main function). Expressions are either
constants, variables or function applications. Anonymous functions, that is, lambda abstractions,
are not supported. Function applications are written in C style, that is, arguments are in a comma-
separated list of expressions wrapped in parentheses. Local variable definitions are expressed as
let-constructs, and conditionals exist in the form of if-then-else expressions. Primitive operations
contain set of standard arithmetic operations, for example, +, -, sel, and so on, comparisons
and mathematical functions like sqrt, sin, and so on. Additionally, our core language contains two
combinators, map and reduce. They serve as vehicles for expressing data parallel operations.

All constants in the language are n-dimensional arrays. Scalars are represented by numbers, and
higher-dimensional arrays are represented by nested lists of numbers in square brackets.

All SAC programs compute n-dimensional arrays as results. We denote the n-dimensional array
by a pair hŒs1; : : : ; sn� ; Œd1; : : : ; dm�i, where Œs1; : : : ; sn� denotes a shape of the array, that is, its
extent with respect to n individual axes and the vector Œd1; : : : ; dm� containing all elements of the
array in a linearised row-major format. Please note that we use the term data layout to denote a
mapping of the indexes of the array to its linearised form. If AŒi1; : : : ; in� D dk , then the data layout
is a function relating Œi1; : : : ; in� and k.

We use a standard big-step operational semantics as defined in detail in [6]. The only two con-
structs that require special attention here are the operators map and reduce as well as the primitive
operations for which vectorised versions exist. Jointly, these language constructs play key roles in
our inference.

2.1. Map/reduce

These two operators constitute simplified versions of the with-loop-constructs in full-fledged SAC‡.
They are array versions of the well-known combinators. Both operators compute expressions over

‡For details on with-loops in SAC see [5].

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2092–2119
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TYPE-DRIVEN DATA LAYOUTS FOR IMPROVED VECTORISATION 2095

Figure 2. The semantics of MAP and REDUCE operations.

an N -dimensional index space and then either combine the results in an array (map variant) or fold
them using a binary operator.

A formalisation of the semantics of map and reduce based on the deduction system from [6] is
presented in Figure 2. The map-rule shows that the upper limit eu has to reduce to an n-element vec-
tor that determines the outermost n dimensions of the overall result. For each index vector within the
n-dimensional index range, the expression eop needs to evaluate to an m-dimensional result of one
fixed shape. These m-dimensional results are then composed to the overall result by concatenating
their element values.

Similar to the map-rule, the reduce rule computes identically shaped values eop for all indices
within the index space defined by the upper limit vector eu. However, here, the result is obtained by
consecutive folding using the binary function f . As one can see, the semantics definition prescribes
left-to-right folding with respect to a row-major unrolling in the index space. Despite this defini-
tion, we demand f to be associative and commutative in order to enable arbitrary folding orders.
For example:

map i < Œ2; 3� 3
evaluates to
������! ŒŒ3; 3; 3�; Œ3; 3; 3�� reduce i < Œ2; 3� .C/3

evaluates to
������! 18:

The iteration space always starts with zero vector and ends with the upper bound of the operator.
For the aforementioned example, the iterations space would be

¹Œ0; 0�; Œ0; 1�; Œ0; 2�; Œ1; 0�; Œ1; 1�; Œ1; 2�º:

Please note, that an iteration space forms an array of the shape identical to the upper bound (Œ2; 3�
in our example). In both cases, the goal expression is being evaluated at every iteration:

¹Œ0; 0�! 3; Œ0; 1�! 3; Œ0; 2�! 3; Œ1; 0�! 3; Œ1; 1�! 3; Œ1; 2�! 3º:

The order of the evaluation is non-deterministic. Finally, the map operator produces an array
ŒŒ3; 3; 3�; Œ3; 3; 3�� as a result. The reduce operator takes an extra step to combine evaluated
expressions using the binary function:

Œ0; 0�! 3C Œ0; 1�! 3C Œ0; 2�! 3C Œ1; 0�! 3C Œ1; 1�! 3C Œ1; 2�! 3:

Evaluation order is again non-deterministic. A binary function of the reduce must be associative and
commutative, and the shape of the reduced result would be identical to the shape of the evaluated
goal expression.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2092–2119
DOI: 10.1002/cpe
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2096 A. ŠINKAROVS AND S.-B. SCHOLZ

Note here that the indexing variable can be referred to within the expression

map i < Œ3� i
evaluates to
������! Œ0; 1; 2�:

2.2. Vector operations

We assume that all SIMD operations have a built-in fixed vector length ŒV �, where V is a given target
architecture-specific constant. For the context of this paper, we consider all primitive functions to
have SIMD counterparts with the following semantics:

Ef .Œa1; : : : ; aV �/ D Œf .a1/; : : : ; f .aV /�:

The only exception is the selection operation sel (iv, a) which selects the element at the
index position iv of the array a. It also has a vectorised counterpart, but its semantics is not as
straight-forward. For example, related work is presented in Section to [4].

3. RUNNING EXAMPLE

The main motivating example that we are going to use throughout the paper is an implementation
of the N-body problem. The problem is defined as an iterative approximation of the movement
of N planets. During each step, accelerations, velocities and positions of all the planets are being
recomputed. Acceleration of the i-th planet is computed from the relative positions of all the other
planets. Then the velocity and in turn, the position of the i-th planet is updated using the newly
computed acceleration. For more details, please refer to [8], which discusses the N-body problem
in more detail. We provide a core implementation of the benchmark using SAC-� in Figure 3. It has
been slightly adjusted from the version discussed in [8] to be better suited for demonstrating our
inference technique. We use the symbol # for inserting comments and the symbol ; as a shortcut
for nested let expressions.

The function advance is updating arrays of positions and velocities on each time step. To do
so, it first computes the mutual accelerations between all planets. This computation is achieved
by mapping the function planet_acc over all planets. planet_acc computes the summed
up forces that all planets have on the given position pos. This reduction in turn makes use
of the function acceleration, which computes the acceleration between two planets posx
and posy.

It is remarkable that the N-body implementation grants a number of vectorisation opportunities,
most of which are not valid under classical auto-vectorisers. The main reason is the way acceler-
ation is computed between two planets. Acceleration, velocities and positions have shape ŒN; 3�.
The most compute-intensive operation happens at the inner dimension of the position array. Theo-
retically, that would be an ideal scenario for vectorisation; however, the problem is that the size of
this dimension is too small. For most of the architectures, the length of float vector would be four,
which means that loading/storing within a given layout would require masking, and has an implica-
tion on the alignment of load/store that might introduce noticeable overheads on some targets. As a
consequence, at that point, classical auto-vectorisers would typically give up.

As a programmer, one might predict such a behaviour and extend the innermost dimension to
match the vector length. That might bring some performance gains, but the danger is that the
increased memory footprint of the array will slow down the overall performance, an aspect that is
very easy to overlook. More importantly, an alternative solution is typically being missed out.

Rather than considering a vectorisation over the triplets, one might consider a vectorisation of
the array of accelerations over the components of triplets. In that case, memory overhead would be
substantially lower, and the number of elements processed per vector operation would be higher.
The drawback is that such a transformed data layout has an impact on the whole program. It might
be (i) arbitrary difficult to rewrite large program, and (ii) the transformation might not be beneficial.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2092–2119
DOI: 10.1002/cpe
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TYPE-DRIVEN DATA LAYOUTS FOR IMPROVED VECTORISATION 2097

Figure 3. Implementation of the N-body.

3.1. The key ideas in a nutshell

We generalise the idea of vectorisation across non-innermost dimensions as follows: For
any given array A with shape Œs1; : : : ; sn�, we consider vectorisations in all possible axes
1; : : : ; n. A vectorisation in axis k will lead to a layout remapping into an array Ak of shape
Œs1; : : : ; sk�1; sk=V; skC1; : : : ; sn; V �, where the V elements that in A are adjacent in axis k are now
adjacent in the innermost axis nC 1 of Ak .

The key problem then lies in the necessity to find out which layouts can result in vectorisation.
Vectorisation potential in general stems from applications of primitive operations likeC to elements
of an array within the context of an independent loop. In such a setting, any of the array’s axes can
be chosen for vectorisation whose corresponding index is traversed by an independent loop. How-
ever, in practice, the choices in most cases are more limited due to other selections that are present
within such a nesting of independent loops. If selections into more than one array exist, we get
correlations between the layout choices of the arrays involved; examples for this situation can be
observed in the function vplus of our N-body application, where we receive correlations between
the arrays x and y. If several elements within the same array are selected, axes with two or more

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2092–2119
DOI: 10.1002/cpe
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2098 A. ŠINKAROVS AND S.-B. SCHOLZ

different accesses require more involved code transformations and are therefore less favourable.
Furthermore, we have to take into account that the same array can be used in several loop nests,
all of which may provide vectorisation opportunities; an example for this situation is the use
of the array positions within the body of the function advance in our running example.
Finally, the nests of independent loops may not exist within a single function body. Instead, we
can have situations where layout demands for vectorisations may need to be propagated through
function calls; an example for this situation is the function acceleration of the N-body
application which exposes the layout demands on its first two arguments to the calling context
in planet_acc.

The main contribution of this paper is a type system to describe the layout inference. It allows
us to control all the aforementioned aspects: We can propagate layouts through function calls, and
we can control tightly what happens to all loop indices involved. Furthermore, it takes into account
multiple uses of the same data structure within an entire application and ensures consistent layout
transformations throughout.

4. A TYPE SYSTEM FOR DATA-LAYOUTS

Before we describe the layout types, let us clarify the term type and put into perspective of the
language. We use layout types to denote transformations of expressions. Additionally to that, we
have standard element types like: int, float, and so on; we have shapes as a part of the types that
form a subtyping hierarchy and participate in function overloading. For more details, please refer
to [5]. That means that every expression of the language is annotated with a type that consists of
three orthogonal components: element type, shape and layout type. In further discussions we are
going to consider only layout types assuming that the element types and shapes have been inferred
and are sound.

As explained informally in the previous section, for a given n-dimensional array, we consider
n different layout transformations. We denote these by the natural numbers i 2 ¹1; : : : ; nº, where
i refers to the layout transformation when the shape of an array changes from Œs1; : : : ; sn� into
Œs1; : : : ; si=V; : : : ; sn; V �; V neighbour elements at axis i are placed at the newly introduced nC 1-
th axis. In addition, we use 0 to denote the shape identity and we use 4 to denote a shape
extension from Œs1; : : : ; sn� into Œs1; : : : ; sn; V �. The transformed values are either replicated in
case of constants or a represent V -fold selection. The latter is needed for the actual vectorisa-
tion of expressions that happen inside our map or reduce constructs. Finally, we add a layout
type for index vectors. They play a crucial role in the layout inference as they introduce con-
straints between layouts of different arrays whenever they are used for selections from more than
one array. Index vectors can have types idx.m/ and m 2 ZC that denote that the m-th com-
ponent of the index vector is considered for vectorisation. Now, we can define the set or layout
types as

L D N [ ¹4º [ idx.m/;m 2 ZC
§:

We also introduce layout-type-signatures to denote the different possible layout transforma-
tions an individual function can be applied to. Formally, an n-argument function is described by a
.�1; : : : ; �n/ ! �nC1 type, where all �i are layout types as defined earlier. We denote the union of
L with all layout-type-signatures over L by LT .

Here is a simple example to develop an intuition for the layout types and corresponding
transformations. Let us consider a function that adds two matrices presented in Figure 4.

Both input matrices as well as the result are two dimensional arrays of shape ŒN;N � with the
element type float. Our goal is to find a valid layout transformation for the arrays in the program that
would lead to replacement of scalar primitive operations with vector ones. In this work, we restrict

§Note here that despite of the infinite nature of the definition of L, for any given program L is finite as the natural
numbers are bound by the maximum number of array axes present.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2092–2119
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TYPE-DRIVEN DATA LAYOUTS FOR IMPROVED VECTORISATION 2099

Figure 4. Addition of two N �N matrices.

layout transformations of the arrays and only consider tiling with tiles of size 1 � V across one of
the array’s axes and moving those tiles into newly created dimension. For our example, we have the
following cases (assuming that N D 4 and V D 2):

M 0 D

0
B@
Œ01; 02; 03; 04�

Œ05; 06; 07; 08�

Œ09; 10; 11; 12�

Œ13; 14; 15; 16�

1
CA M 1 D

�
ŒŒ01; 05�; Œ02; 06�; Œ03; 07�; Œ04; 08��

ŒŒ09; 13�; Œ10; 14�; Œ11; 15�; Œ12; 16��

�
M 2 D

0
B@
ŒŒ01; 02�; Œ03; 04��

ŒŒ05; 06�; Œ07; 08��

ŒŒ09; 10�; Œ11; 12��

ŒŒ13; 14�; Œ15; 16��

1
CA :

Here, M i denotes a transformed array M with respect to the layout type i . We expect from our
inference to identify two vectorisation possibilities for matplus: when both of the arguments are of
layout type 1, and both of the arguments are of layout type 2. Formally, we would expect to see the
following typings:

# Corresponds to M1

matplus (a, b)WW .1; 1/! 1 =

map iWW idx.1/ < [N, N]

a[i]WW 4 + b[i]WW 4

# Corresponds to M2

matplus (a, b)WW .2; 2/! 2 =

map i WW idx.2/ < [N, N]

a[i]WW 4 + b[i]WW 4

We use here e WW � notation to denote that e is of layout type � to avoid confusion with standard
typing for which we are using e W f loatŒN � notation. These typings will correspond to the following
transformations:

# (float[N/V,N,V], float[N/V,N,V])
# -> float[N/V,N,V]
matplus (a1, b1) =
map i < [N/V, N]
vplus (vsel (i, a1),

vsel (i, b1))

# (float[N,N/V,V], float[N,N/V,V])
# -> float[N,N/V,V]
matplus (a2, b2) =
map i < [N, N/V]
vplus (vsel (i, a2),

vsel (i, b2)),

where vplus and vsel correspond to vector variants of + and sel.

4.1. Environments

The purpose of the layout type system is to infer which combinations of layout choices for all data
structures will enable some code vectorisation. To describe n, such combinations within a single
environment, we formalise environments as mappings from identifiers to n-element vectors of types,
that is, we have environments E � Id � LT n. We denote the lookup of a variable v in E by E.v/,
and E ˚ .v; h�1; : : : ; �ni/ denotes an environment that returns the vector type h�1; : : : ; �ni for the
variable v.

Unless specified otherwise, we are going to use small Greek letters to denote vectors of layout
types and indexes to get individual components. For example, � � h�1; : : : ; �ni; �i 2 LT . We use
j� j to denote the number of components of a vector type � , that is, jh�1; : : : ; �nij D n.

For a more succinct presentation of the type system, we use separate environments for all func-
tions. We denote the collection of all these environments by a ‘function environment’ F � Id � E .
Look-up of a function identifier f and presence of function identifiers are denoted in the same way
as its done for standard environments, that is, we use F.f / and F ˚ E , respectively.

In order to access the resulting type of the function f , we are going to introduce a meta-variable f
in the relevant environment. We can look-up a function type using F.f /.f / notation. As we require
all entries of one variable environment to have the same length, an environment E of a function f
takes the general form:

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2092–2119
DOI: 10.1002/cpe
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2100 A. ŠINKAROVS AND S.-B. SCHOLZ

E D
°
v1 W

˝
�11 ; : : : ; �

1
n

˛
; : : : vm W h�

m
1 ; : : : ; �

m
n i ; f W

D
�
f
1 ; : : : ; �

f
n

E±
:

It can be seen as a matrix of size .m C 1/ � n, where m is the number of local variables and
arguments in the function this environment captures;C1 comes from the meta variable denoting the
type of the function, and n is the number of valid layout combinations for that function.

Each column in the matrix represents a layout combination for all variables and arguments of the
function including its signature. We refer to the i-th column of an environment E by E Œi�.

4.2. Type rules

With these definitions at hand, we can define a deduction system in order to characterise the validity
of layout-transformations. The judgements of this deduction system are of the form F ; E ` expr W
h�1; : : : ; �mi where

F is a function environment; it contains separate environments for all functions;
E is an environment containing valid layout transformations for the identifiers in the

current context;
expr is an expression;
m is the number of valid layout transformations for the function under consideration; and
�i are the m layout-transformations that expr within the current function can undergo.

The type rules for the non-array-specific core of the language can be seen on Figure 5.
Please note that, in the rest of the paper, we use D.e/ to denote a number of axes in e and the

length of the vector S0.e/ to denote the length of the first dimension.

e + hŒs1; : : : ; sn�; Œd1; : : : ; dp�i

D.e/ D n
e + hŒn�; Œd1; : : : ; dp�i

S.e/ D n
:

Most of these rules are vectorised versions of the standard rules for typing a first order applied
�-calculus: they only differ from their standard counterparts by dealing with vectors of n types for

Figure 5. Non array-specific layout rules.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2092–2119
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TYPE-DRIVEN DATA LAYOUTS FOR IMPROVED VECTORISATION 2101

each identifier rather than a single type. Two rules are of special interest here: the CONST rule for
typing constants and the APP rule for typing function applications.

The CONST rule allows us to attribute any layout transformation type as long as we stay within
the dimensionality of the constant, or we choose to extend the shape. As a consequence of this
liberty, any possible type inference will have to imply type constraints from the context in order to
constrain the types for constants.

The APP rule correlates n potential layout combinations within the calling context with m poten-
tial layout combinations of the called context. This ensures, that only those layout combinations are
present for which suitable function layout transformations exist that effectively ensures consistency
throughout the entire program.

The rules that give rise to layout transformations are those for primitive operations and those for
the map and reduce constructs are shown in Figure 6.

As explained informally in the previous section, we look for patterns where a primitive operation
for which a vector counterpart exists (PRF[4] rule) is applied to element selections (SEL[4] rule)
into arrays that are located within a data parallel context (MAP[4] rule or RED[4] rule). Like for
example in Figure 4, we have a vector version of plus that is applied on selections to the arrays inside
the map. Depending on the nesting of map constructs, the MAP[4] rule propagates type relations in
a different way. We have to distinguish four different cases:

(1) The map construct may control a layout transformation, that is, it may be responsible for
the data-parallel loop that is due to be vectorised. In this case, the corresponding axis k is
attributed as type idx.k/ for the index variable and the expression e needs to be of expansion
type (4).

Figure 6. Layout rules enabling layout transformations.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2092–2119
DOI: 10.1002/cpe
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2102 A. ŠINKAROVS AND S.-B. SCHOLZ

(2) The map-construct can be syntactically located between the controlling map construct and
the expression that is to be vectorised. In this case, the type for the index j has to be of type
0, and the expression is of expansion type.

(3) If we do not have a vectorisation at all, the types for the index, expression and the entire map
construct are all 0.

(4) Finally, we can have a situation, where the map construct surrounds a map construct that
controls a vectorisation. In that case, the expression is of some type k already, and the result
type of the map-construct has to reflect that we have a layout transformation on an inner
dimensionality. This is done by adding the number of axes of the surrounding map to k.

The PRF[4] rule captures all possible vectorisation cases: vectorisation is possible (indicated by
the expansion type 4), whenever at least one argument has expansion type. Finally, the only rule
that gives rise to such an expansion type is the SEL[4] rule for array selections. Similar to the
MAP[4] rule, the SEL[4] rule has to deal with potential nestings of array selections:

(1) The case that gives rise to vectorisation is the case where the index has type idx.k/ and the
array to select from has a matching layout transformation k.

(2) If a selection is applied to an array that has given rise to vectorisation already (it is of type4)
but the selection is still located inside the controlling map construct, the index needs to be of
type 0 and the expansion type is propagated on.

(3) Finally, the selection can be located outside of a controlling map construct, in which case the
array is of type k and the result type as well as the index type are both of type 0.

The IDX[4] rule allows for nested map/reduce constructs to be typable. The main use case for that
is a function application on non-scalar selections from an array.

5. LAYOUT INFERENCE

The layout inference can be directly deduced from the layout rules similarly to monomorphic type
systems. However, the main challenge comes from the facts as follows:

(1) The length of vector types in the environment is not known at the time we start the inference;
(2) CONST defines the valid layout-types for components of the vector type, but we do not know

which variant we should use for a certain component;
(3) Recursive functions require a fixed point iteration.

The overall intuition behind the algorithm is that we start with adding all the valid type combi-
nations and we cross out those combinations that have proven to be untypable at every step of the
inference. Every time we see a constant, we expand existing environment by assuming that every
column in the environment is compatible with any valid layout type for the given constant. Finally,
as for recursive functions, we introduce a? type when the type of the function is not yet known; we
use a fixed-point iteration to eliminate ? types.

The algorithm can be seen as a top-down traversal over the program, where for every term, the
layout rule corresponding to the type of the term is applied. We start the inference with an empty
function F , which is extended whenever a function is being processed.

5.1. The inference algorithm

We formulate the inference using Tinf schemata. The algorithm is a top-down traversal, and the type
of the overall program can be inferred by applying Tinf to the letrec expression. Further, in this
section, we define Tinf application for all the expression kinds according to Figure 1 and explain the
details. That allows us to infer types for all the programs in our language.

Formally, Tinf application has the following form:

Tinf.F ; E ; e/;
where F is a function environment, and E is an environment related to a term we are inferring a
type for. The inference step evaluates to a triplet:

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2092–2119
DOI: 10.1002/cpe
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TYPE-DRIVEN DATA LAYOUTS FOR IMPROVED VECTORISATION 2103

.F 0; E 0; �/ D Tinf.F ; E ; e/;

with potentially modified function environment F 0, potentially modified environment E 0 and a type
(in the sense of environments, i.e. a tuple of layout types) � . The meaning of this application
is the following:

.F 0; E 0; �/ D Tinf.F ; E ; term/

F 0; E 0 ` term W �
:

Before we formalise the algorithm, we have to introduce a couple of new meta-operators and
meta-types. First of all, we introduce a bottom type, denoted with ?. This type is used only in
terms of the inference algorithm to drive a fixed point iteration and does not represent any valid
layout. Intuitively, it denotes the lowest type in a subtyping hierarchy: 8� 2 L ? <W � , if we have
had sub-typing. The second meta-type is called nil and is being denoted with �. Semantically, it
means that, in a given environment at the position where � appears, an expression is proven to be
untypable. The main purpose of� is to mark a column in the environment that has to be deleted.

The variable typing rule VAR says that the type of a variable is just a lookup in the environment.
However, the variables have to get there somehow. If we look at the inference rules, an environment
is being extended every time we use the ˚ operator. For let expressions that directly translates into
the algorithm step, however, for function arguments, map and reduce index variables, and constants,
the type has to be guessed. To solve this, we are going to consider all the valid typings for and elim-
inate those that are not sound during the inference. We introduce the T meta-operator to generate
all the valid typings for an object x:

T .x/ D

²
h0; 1; : : : ;D.x/;4i x is constant
h0; 1; : : : ;D.x/; idx.1/; : : : ; idx.S0.x//;4i x is a variable or argument:

At every step, we are going to reconstruct the environment by either expanding it with a new
layout or shrinking it in case a certain layout combination is proven to be untypable. In order to
express this process formally, we introduce three more meta-operators on types: n-times type repli-
cationR.�; n/ and n-times type component replication C.�; n/; and a helper meta-operator for tuple
concatenation CC. We defined those as follows:

� CC � D h�1; : : : ; �j� j; �1; : : : ; �j� ji

� CC hi D hi CC � D �

C
�
h�1; : : : ; �j� ji; n

�
D CC

j� j
iD1

�
CCnjD1 h�i i

�
R
�
h�1; : : : ; �j� ji; n

�
D CCniD1 �:

For example, R.h1; 2; 3i; 2/ D h1; 2; 3; 1; 2; 3i and C.h1; 2; 3i; 2/ D h1; 1; 2; 2; 3; 3i.
Now, we define two operations on environments: environment extension ˚ and environment

shrinking �. Please note that, here, ˚ has a different semantics than in the inference rules. How-
ever, they are related in the following sense: before we can add a new variable, which relates to the
inference rules˚, an environment has to be extended using the ˚ we are defining as

E ˚ � D ¹.v; R .�; j� j// j .v; �/ 2 Eº :

For example, assuming that E D ¹.v; h0; 1;4i/º, then E ˚ h2; 3i D ¹.v; h0; 1;4; 0; 1;4i/º.
Please note that the number of components of every type in the environment is an invariant denoted
with l.E/.

Environment shrinking is defined using a helper rm meta-operator as follows:

E � � D E 0 where

E 0 D ¹.v; rm.�; �/ j .v; �/ 2 Eº where

rm.�; �/ D CC
j� j
iD1 if �i ¤ � then h�i i else hi

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2092–2119
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2104 A. ŠINKAROVS AND S.-B. SCHOLZ

For example, assuming that E D ¹.v1; h1; 0i/; .v2; h4; 1i/º, we delete the columns of E at the
position where we have � in the right-hand side operator. E � h�; 1i D ¹.v1; h0i/; .v2; h1i/º. This
is being used to remove columns of the environment that are proven to be untypable.

With these definitions at hand, we can now formally describe individual cases of the
Tinf application.

5.1.1. Letrec expression. Letrec inference consists of two steps—inferring types for the functions
and inferring type for the goal expression. However, as functions might call each other in their bodies
and functions can be recursive, we populate F0 with function types that return ? for any possible
layout combination that arguments can take. That ensures that a look-up in the function environment
F0 always is successful. After that, we infer types for all the functions again, considering their goal
expressions. Formally, we say that the inference of letrec is an inference of its goal expression
assuming that functional environment Fn contains function types.

Tinf
�
¹º; ¹º; letrec f1

�
a11; : : : ; a

1
m1

�
D e1; : : : ; fn

�
an1 ; : : : ; a

n
mn

�
D en in e

�
D Tinf .Fn; ¹º; e/ :

To construct the environment Fn, we start with creating environments Ei for every function fi .
The environment Ei contains a Cartesian product of all the possible argument types plus the type
of the function. Components of this function type will have a form .�1; : : : ; �n/ ! ? for every
possible layout combination of all the arguments. A Cartesian product of the argument types is being
created by consequently adding every argument x to Ei using the following procedure: expand all
the existing types of Ei by applying Ei ˚ T .x/ and add the entry x W C.T .x/; l.E//. This can be
formalised as

E1i D
®�
ai1; T

�
ai1
��¯

E2i D E1i ˚ T
�
ai2
�
[
®�
ai2; C

�
T
�
a12
�
; l
�
E1i
��¯

� � �

Emii D Emi�1i ˚ T
�
aimi

�
[
°�
aimi ; C

�
T
�
aimi

�
; l
�
Emi�1i

��±

8
l
�
Emi
i

�
jD1 �j D

�
Emii .a1/j ; : : : ; Emii .an/j

�
! ?

EmiC1i D Emii [ ¹.fi ; �/º:

Please note that the �j is a function type for the layout combination of the arguments in the j -th
column of Emii . The notation Emii .ak/j denotes j -th component of the type that the argument ak
has in the environment Emii . For example, for the function

# (float[N], int) -> int

f (a, b) = ...;

we expect the following environment:

a W 0 1 4 0 1 4

b W 0 0 0 4 4 4

f W .0; 0/! ? .1; 0/! ? .4; 0/! ? .0;4/! ? .1;4/! ? .4;4/! ?:

We can construct a functional environment F0 that captures all the functions returning ? for any
valid layout combination of the arguments as follows:

F0 D
n[
iD1

°�
fi ; EmiC1i

�±
:

Now, using F0 we can precise function types by inferring the types of the goal expressions.
Formally, we denote it as follows:

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2092–2119
DOI: 10.1002/cpe

 15320634, 2016, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.3501 by U

niversity O
f N

ottingham
, W

iley O
nline L

ibrary on [02/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



TYPE-DRIVEN DATA LAYOUTS FOR IMPROVED VECTORISATION 2105

.F1; _; _/ D Tinf.F0;F0.f1/; f1.a11; : : : ; a1m1/ D e1/
� � �

.Fn; _; _/ D Tinf.Fn�1;Fn�1.fn/; fn.an1 ; : : : ; anmn/ D en/:

Fixed point iterator. We use fixed point iterator as we can have recursive functions. The main
principle is based on the fact that we introduce a bottom type if function application hits yet unfin-
ished function. The bottom types can be absorbed by the condition, which gives a raise to the fixed
point. The step of a fixed point is an application of Tinf to the letrec expression.

The fixed point iteration stops when none of the types got changed. The fixed point terminates
because the size of any environment is bound by the product of dimensionalities of the arguments,
constants and map/reduce index variables. That is because environments can grow only on applica-
tion of˚ operation, which happens in case of constants, arguments and map/reduce index variables.
The let case does not count as environment expansion happens via the expression we substitute with.
It means that, even if an environment would grow after elimination of a bottom type, it would not
grow bigger than the bound. And as bottom types never replace non-bottom types, we can either
precise a type or leave it unchanged.

5.1.2. Function definition. When we start the inference of a function definition, the functional
environment will contain entries for all the functions from the letrec. Environments of individual
functions will at least contain the arguments and the function type. The only thing that we need to do
at this point is to infer the type for the body of a function and replace the functional type. Formally,
we denote it as follows:

Tinf .F ;F.f /; f .a1; : : : ; an/ D e/ D .F 00; E 0; E 0.f // where

.F 0; E ; �/ D Tinf.F ;F.f /; e/
8
l.E/
iD1�i D .E.a1/i ; : : : ; E.an/i /! �i

E 0 D ¹.v; �/ j .v; �/ 2 E ^ v ¤ f º [ ¹.f; �/º
F 00 D ¹.g; Eg/ j .g; Eg/ 2 F 0 ^ g ¤ f º [ ¹.f; E 0/º:

In the last two steps, we reconstruct environment E by removing potentially imprecise type
for f and adding a newly inferred one and we have updated functional environment F replacing
environment of f with E 0.

5.1.3. Variables and constants. As the VAR rule suggests, the type of a variable can be obtained by
looking-up the environment:

Tinf.F ; E ; v/ D .F ; E ; E.v//:

As we said earlier, for constants, we need to guess the type, as they might have a number of
typings; we cannot say which of them are sound. We extend the environment with T .c/:

Tinf .F ; E ; c/ D .F ; E ˚ T .c/; C.T .c/; l.E/// :

Assuming that we have an environment E ,

a W 1 2;

and we apply Tinf.F ; E ; 42/ we expect an environment to become

a W 1 2 1 2

as T .42/ D h0;4i.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2092–2119
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2106 A. ŠINKAROVS AND S.-B. SCHOLZ

5.1.4. Function application. Function applications require a bit more work. First, we acquire layout
types for all the arguments; after that, we generate valid types for the results; finally, we shrink the
environment and add the resulting type.

The problem we potentially have is that environment changes on every Tinf reduction step. It
means that, if we have an application of f to e1; : : : ; en and we infer a type for e1 with .F ; E1; �/ D
Tinf.F ; E ; e1/, it might be invalidated in environment E1. For example, we infer the type for the
second argument: .F ; E2; �/ D Tinf.F ; E1; e2/, then the type of e1 in E2 might differ from � . In
other words, for a function application, we need to find types of e1; : : : ; en in environment En. The
easiest way to achieve that would be to keep expressions in the environment; in which case, it would
be automatically updated on every reconstruction. For technical reasons, we would assume that all
the argument expressions of a function application are variables. That would allow us to add the type
of the argument expressions in the environment making sure that it is being updated properly, as
adding e2 has a potential effect on the type of e1. The transformation itself is very straight-forward:
instead of f .e1; : : : ; en/, we consider expression let v1 D e1 in let v2 D e2 : : : inf .v1; : : : ; vn/. We
start with acquiring types for the arguments.

Tinf .F ; E ; f .v1; : : : ; vn// D .F ; E2; rm. 0;  0/
8
l.En/
iD1 �

i D E.vi /:

Every argument vi has type �i in environment E . The next step would be to obtain a type of
function f . We do that by enquiring functional environment F and then the environment that is
bound to f .

˝�
�11 ; : : : ; �

1
n

�
! �1; : : : ;

�
�m1 ; : : : ; �

m
n

�
! �m

˛
D F.f /.f /:

After that, we have to match �1
k
; : : : ; �n

k
argument types with the function arguments. Please note

that function type might be not unique, that is, for a chosen �1
k
; : : : ; �n

k
, we might get several valid

return types. To deal with this fact, the result of the match would be a l.E/-element tuple of tuples,
where every inner tuple consists of valid return types.

Because of fixed point, some of the arguments might have? as a part of its types. Obviously, they
would not match any function type, as the arguments are always consist of non-? types. However,
it does not mean that we have to consider this layout combination untypable. In order to deal with
this situation, we say that if any of �1

k
; : : : ; �n

k
is ?, then the result of the application is ?. Here is

how we express it:

8
l.E/
iD1 i D

8<
:
h� 01; : : : ; �

0
xi 8

x
jD1�

0
j D �k H) 9k 6 m

�
8nwD1�

i
w D �

k
w ^ �

i
w ¤ ?

�
h?i 9k 6 n

�
�i
k
D ?

�
h�i otherwise.

In case j i j > 1, we need to replicate the i-th column of E j i j times. Then we flatten  by
concatenating its components; finally, we remove environment columns where  has�, and we add
updated  type for the function application.

E1 D ¹.e; R.�i ; j i j// j .e; �/ 2 Eº
 0 D CCmiD1  i

E2 D E1 �  0:

 0 is a flattened  , and rm. 0;  0/ is a  0 type with� components being removed.

5.1.5. Let expression. The let expression is processed by inferring a type for the expression we are
substituting with, adding the variable of this type to the environment and inferring a type for the
goal expression within the new environment.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2092–2119
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TYPE-DRIVEN DATA LAYOUTS FOR IMPROVED VECTORISATION 2107

Tinf .F ; E ; let x D e1 in e2/ D
�
F2; E3; � 00

�
where

.F1; E1; �/ D Tinf.F ; E ; e1/
E2 D E1 [ ¹.x; �/º

.F2; E3; � 0/ D Tinf.F1; E2; e2/:

5.1.6. Primitive functions. Primitive functions can be handled via constructing a function type for
the primitive function and adding it into the function environment:

�C D h.0; 0/! 0; .0;4/!4; .4; 0/!4; .4;4/!4i

Tinf.F ; E ; aC b/ D Tinf.F [ ¹.C; ¹.C; �C/º/º; E ;C.a; b//:

Constraints in the other rules use polymorphic types, so we cannot reconstruct them easily in
the form of function types; however, we can still reuse it at  type generation. Let us consider a
MAP[4] rule:

5.1.7. Map and reduce expressions. Similarly to the application, we abstract the upper bound
expression u into a variable vu; we expand the environment with all the valid types for the index
variable j and infer a type for the goal expression e.

Tinf .F ; E ;map j < vu e/ D
�
F ; E3; rm. ; /

�
where

� D h0; idx.1/; : : : ; idx.S0.j //i
E1 D E ˚ � [ ¹.j; C.�; l.E//º

.F ; E2; �/ D Tinf.F ; E1; e/
� D E2.vu/; � D E2.j /

8
l.E2/
iD1  i D

8̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
:

k �i D idx.k/ ^ �i D 4^ �i D 0

4 �i D 0 ^ �i D 4^ �i D 0

0 �i D 0 ^ �i D 0 ^ �i D 0

S0.j /C k �i D 0 ^ �i D k 2 ZC ^ �i D 0

? �i D ?_ �i D ?_ �i D ?

� otherwise

E3 D E2 �  :

The inference for reduce expression is performed in a similar fashion up to the generation of  
type that directly follows from the conditions on type � in the RED[4] typing rule.

5.1.8. Selection and index concatenation. Similarly to the application, both arguments of the selec-
tion are abstracted into variables vi and ve , and the resulting type is generated using conditions on
� type in the SEL[4] rule.

Tinf .F ; E ; sel.vi ; ve// D
�
F ; E 0; rm. ; /

�
where

� D E.vi /; � D E.ve/

8
l.E/
iD1 i D

8̂̂
ˆ̂̂<
ˆ̂̂̂
:̂

4 �i D idx.k/ ^ �i D k ^ k 2 ZC
4 �i D 0 ^ �i D 4

0 �i D 0 ^ �i 2 N

? �i D ?_ �i D ?

� otherwise

E 0 D E �  :

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2092–2119
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2108 A. ŠINKAROVS AND S.-B. SCHOLZ

The inference for the index concatenation is constructed similarly.

5.1.9. Conditions. Conditions deserve a special attention here as it is the only kind of expressions
that is able to absorb ? types in a branch, and propagate non-? layout-types. This is a basic mech-
anism of the fix point iterator—in case there is a recursive call to a not yet inferred function in one
of the branches, the return type of this function call would be ?, and it would be propagated up to
the branch expression. That would allow us to infer the type of the function and on the next iteration
of the fixed point to precise it in case some of the layout combinations in the branch are untypable.
Similarly to the case of application, we abstract predicate then branch and else branch expressions
into the variables vp , vt and vf accordingly. Here is the rule:

Tinf
�
F ; E ; if vp then vt else vf

�
D
�
F ; E 0; rm. ; /

�
where

� D E.vp/; � D E.vt /; � D E.vf /

8
l.E/
iD1 i D

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

�i �i D 0 ^ �i D �i

4 �i D 4^ .�i ; �i / 2 ¹.0;4/; .4; 0/; .4;4/º

? �i D ?_ .�i D ?^ �i D ?/

�i �i D 0 ^ �i ¤ ?^ �i D ?

�i �i D 0 ^ �i D ?^ �i ¤ ?

4 �i D 4^ ..�i 2 ¹0;4º ^ �i D ?/

_ .�i 2 ¹0;4º ^ �i D ?//

� otherwise

E 0 D E �  :

5.2. Sample layout inference

We are going to consider an application of the inference algorithm to the vplus function, which is
a part of the N-body code. The function is defined as

# (float[3], float[3]) -> float[3]
vplus (x,y) = map i < [3] (x[i] + y[i]).

It adds two three-element vectors component-wise. When the inference of the function definition
starts, the letrec rule has created an environment that consist of all the possible argument layout type
combinations returning bottom type. Here is how the environment F.vplus/ looks like:

x W 0 1 idx.1/ 4 0 1 idx.1/ 4 0 1 idx.1/ 4 0 1 idx.1/ 4
y W 0 0 0 0 1 1 1 1 idx.1/ idx.1/ idx.1/ idx.1/ 4 4 4 4

� W ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?:

We use � to denote the return type of the function body to save some space on the page.
Now, according to the map inference rule, we expand E further by adding a type for i and a type

for the upper expression. The valid types for i would be � D h0; idx.1/i. For presentation purposes,
we are going to add � without expanding the environment. As for the upper expression, we could
have expanded the environment with all the valid types for Œ3�; but as we are inferring the type inside
the map expression, we know that all the types other than 0 would be cancelled out, so we might
just add a vector of zeroes. Here is an updated environment:

x W 0 1 idx.1/ 4 0 1 idx.1/ 4 0 1 idx.1/ 4 0 1 idx.1/ 4
y W 0 0 0 0 1 1 1 1 idx.1/ idx.1/ idx.1/ idx.1/ 4 4 4 4
i W � � � � � � � � � � � � � � � �

Œ3� W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

� W ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?:

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2092–2119
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TYPE-DRIVEN DATA LAYOUTS FOR IMPROVED VECTORISATION 2109

Please note that, when we use Œ3� in the environment, we assume the matching variable for the
upper expression in the map. The body of the map is a primitive operation. Following the primitive
function rule, we assume that we have surrounding variables for subexpression so we infer types for
those first. The left-hand side expression is a selection sel.i; x/, which in this particular case, would
produce a type for combinations: .0; 0/; .0; 1/; .idx.1/; 1/; .0;4/ and cross out all the rest columns.
After this operation is performed, the environment would look as follows:

i W 0 0 idx.1/ 0 0 0 idx.1/ 0 0 0 idx.1/ 0 0 0 idx.1/ 0

x W 0 1 1 4 0 1 1 4 0 1 1 4 0 1 1 4
y W 0 0 0 0 1 1 1 1 idx.1/ idx.1/ idx.1/ idx.1/ 4 4 4 4

xŒi � W 0 0 4 4 0 0 4 4 0 0 4 4 0 0 4 4
Œ3� W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

� W ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?:

Please note that we got rid of all the � -s at this step. The right-hand side of the plus operation is
also selection: sel.i; y/, so we perform a similar inference step, and the new environment looks as
follows:

i W 0 0 0 0 0 idx.1/ 0 0 0 0

x W 0 1 4 0 1 1 4 0 1 4
y W 0 0 0 1 1 1 1 4 4 4

xŒi � W 0 0 4 0 0 4 4 0 0 4
yŒi � W 0 0 0 0 0 4 0 4 4 4
Œ3� W 0 0 0 0 0 0 0 0 0 0

� W ? ? ? ? ? ? ? ? ? ?:

Finally, we apply the plus rule on xŒi � and yŒi � that is an inner body of the map; it allows us to
infer the type for map that would be also a type for the body of the function (denoted with _ in the
environment). After the application the environment would look as follows:

i W 0 0 0 0 0 idx.1/ 0 0 0 0

xŒi � W 0 0 4 0 0 4 4 0 0 4
yŒi � W 0 0 0 0 0 4 0 4 4 4

xŒi �C yŒi � W 0 0 4 0 0 4 4 4 4 4
Œ3� W 0 0 0 0 0 0 0 0 0 0

x W 0 1 4 0 1 1 4 0 1 4
y W 0 0 0 1 1 1 1 4 4 4
� W 0 0 4 0 0 1 4 4 4 4:

That finalises the inference for the vplus. The function type can be seen from the last three lines
of the environment.

The resulting type of such a simple function like vector addition might be quite surprising or coun-
terintuitive, but let us try to develop some intuition regarding this matter. The variety of possibilities
comes from two facts:

(1) We are allowed perform a primitive operation on mixed scalar/vector arguments. Despite the
fact that it is not necessary for constants, as we can always promote a scalar to a vector by
assigning a 4 type to it; we cannot do that in case of expressions with dependencies. For
example, in the expression aŒi � WW 4 C bŒj � WW 0, there is no way to promote bŒj � to vector;
however, we can still apply a vector plus on it.

(2) Scalar selection can be performed on arrays of layout-type k 2 ZC. That is easy to under-
stand if you think about the underlying transformation. In case an array has a type k, then we
grouped its elements across dimension k into vectors. But we can still get a scalar compo-
nent from the vectorised array by selecting a vector and then selecting the component from
the vector.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2092–2119
DOI: 10.1002/cpe
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2110 A. ŠINKAROVS AND S.-B. SCHOLZ

It is easy to see that vprod types .0; 0/ ! 0; .1; 1/ ! 1, and .4;4/ ! 4 should be valid for
vector additions. Now, in .0; 0/ ! 0 type, we can replace first or second, or both arguments with
1; we should still get a 0 type as a result. Finally, we can have .0;4/ ! 4 as we can promote the
scalar selection via vector plus. One can swap the arguments and obtain .4; 0/ in the arguments,
because plus is commutative. Finally, if we can make a scalar selection from 0 argument, we should
be able to select from the argument of type 1, which gives us .1;4/ and .4; 1/ argument types.

6. INITIAL EVALUATION

In this section, we are going to present experimental results achieved so far. Please note that this is
mostly a proof of concept showing that our framework can deliver excellent performance. Extensive
measurements are left for future work.

The measurements we are going to present consist of two benchmarks: the N-body problem
described in Figure 3 and the Mandelbrot problem. The properties of those benchmarks are rather
different. The N-body is both memory intensive and compute intensive application involving an
iterative update of a reasonably sized multi-dimensional array. Such a pattern can be found in many
scientific applications such as solving partial differential equations numerically or other approxi-
mation problems. The Mandelbrot benchmark represents a class of applications where most of the
execution time is spent on computations while the number of memory operations being very small.
Also, the Mandelbrot benchmark requires a more complex pattern of vectorisation as a computation
of an individual element is expressed as a tail-recursive function that has to be vectorised in order
to match the new layout. This requires an additional effort when it comes to masking elements of
individual vectors, and this pattern is not present in the N-body benchmark.

In both cases, the best vectorisation requires layout modifications none of which is achievable
using existing compilers even with the highest level of optimisations, when the proposed layout
inference delivers required vectorisations in both cases.

In the current set of experiments, we want to verify two things:

(1) The proposed inference does improve vectorisation.
(2) Effects of vectorisation are orthogonal to multi-threaded execution.

To verify the first statement, the only thing that matters is availability of SIMD instructions set on
a CPU. For the second statement we require a CPU to have multiple cores. We use three different
machines whose descriptions are presented in Figure 7. The ‘amaterasu’ and ‘jove’ machines can
be seen as typical nodes of a cluster that have four and 12 cores with hyperthreading accordingly.
The ‘laptop’ is a low-profile machine but with a strong vectorisation capabilities. As a consequence,
our testbed allows to observe behaviour on a server-type hardware and verify both the vectorisa-

Figure 7. Machines used to produce the measurements.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2092–2119
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TYPE-DRIVEN DATA LAYOUTS FOR IMPROVED VECTORISATION 2111

Figure 8. Runtime and instruction count relations for the N-body 1024 planets, 200 iterations on
the “laptop”.

tion and scalability, while experiments on the ‘laptop’ tests put our vectorisation system in a more
restrictive setup. This restrictiveness is very important for embedded or low-profile devices like
smartphones, where vectorisation plays a crucial role in image or video processing applications. The
SIMD instruction sets are different for all the three machines: AVX, AVX2 and SSE4.2.

All the machines are Intel-based, we use GNU Compiler Collection (GCC, GNU Project, Mas-
sachusetts Institute of Technology, MA, USA), Intel ICC (Intel, Santa Clara, CA, USA) and perf
tool to count a number of instructions via performance counters of a CPU. The runtime is being
measured by putting a timer around the core regions that excludes initialisation and output times.
For every data point, the minimum of five runs is being taken. We compile all of the benchmarks
with the following compilation flags:

GCC -Ofast -Wall -Wextra -mtune=native -march=native -std=gnu99
-fomit-frame-pointer -fopenmp -lm -lrt

ICC -gcc -Ofast -Wall -Wextra -mtune=native -march=native
-std=gnu99 -fomit-frame-pointer -openmp -lrt.

The transformation of the program is happening on a very high-level language that eventually has
to be compiled down to some target language. The target language that we are dealing with is the
C language; in order to express vector instructions, we use a GCC-based portable framework we
have developed earlier in [3]. By hand-coding C programs, we mimic programs that we expect to
be generated automatically by the SAC compiler—that should give us an idea of what runtimes we
can expect. In order to mimic multi-threaded execution, we are using OpenMP annotations.

6.1. N-body

We start with observing runtime and instruction count relations of different implementations of the
N-body on a single core in Figure 8.

On the left graph, we can see runtime figures of the N-body with 1024 planets and 200 iterations
altering the level of optimisation between -O3 and -Ofast. On the right graph, we relate the
runtimes from the left graph with the number of instructions obtained by the perf tool. The unit of
measure is instruction count per one N-body iteration that we obtain by: Inst300�Inst0

300
, where Insti

is a number of instructions per i iterations of the N-body. The names of the benchmarks in Figure 8
mean the following:

Reference [N/2] is a reference C implementation of the N-body benchmark as it can be found at
the Debian Shootout¶. One important thing to note is that this benchmark uses
the fact that the absolute value of the acceleration for .i; j / planets is the same
as acceleration for .j; i/ planets, but has a different sign. We are going to mark
such a solution with [N/2] postfix and the program that computes accelerations

¶The Computer Language Benchmarks Game, see http://benchmarksgame.alioth.debian.org/ for more details.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2092–2119
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2112 A. ŠINKAROVS AND S.-B. SCHOLZ

for all the pairs with [N] postfix. The version that is doing half of the compu-
tations makes a lot of sense in a single-threaded environment but makes it less
favourable in a multi-threaded context, as outer level parallelisation introduces
large overheads because of scheduling complexity. Please refer to [8] for more
details.

Vectorised [N/2] is the reference implementation vectorised across the inner axis.
X-parallel [N] is vectorised across the inner (x) axis, with SIMD vectors of length 4, and it pads

an array by adding dummy elements to the velocity triplet and position triplet.
Y-parallel [N] is a vectorised implementation across the outer (y) axis. It does not add dummy

elements, so the amount of memory that planets take is the same as in the refer-
ence implementation. One important property about this benchmark is that it can
efficiently use long SIMD vectors, as every vector stores individual components
of different planets, where the X-parallel version requires to pack individual
triplets in the vector, which is more expensive. That is why we prefix this bench-
mark with the length of the vector we use: either four elements (V D 4) or eight
elements (V D 8).

SoA [N] is a reference implementation that computes all the pairs but transforms arrays
of structures into structures of arrays.

The key observation from Figure 8 is that vectorisation across the outer axis performs the best,
and the main reason for that is substantially smaller instruction count. Please note that instruction
count is not the most precise metrics, as it does not directly correlate with runtimes. As you can
see, in case of Reference and X-parallel with -Ofast, we have more instructions but better runtime.
However, for the Y-parallel, the difference is too large to be ignored. As for the effects from turning
-Ofast, we can see that GCC can do a better job, applying some of the vectorisation techniques and
being able to change the order of reductions. As in case of Y-parallel, we change the order of the
reduction anyway, we consider that an honest comparison would be in case of -Ofast. We would
assume that main effects of the -Ofast are in the application of vector variant of the square root
(we do that explicitly in case of Y-parallel) and from doing vector reduction in a more efficient
way, as we express it as just as a sum of components. Finally, we can see that transforming an
array of structures into a structure of arrays (SoA beanchmark) does not have the same effect as
our layout transformations (X-parallel and Y-parallel), either none of the compilers recognised a
potential for vectorisation or the locality effect resulted in disappointing performance. We are not
going to consider SoA in further measurements.

Figure 9. Runtime relations for the N-body 1024 planets, 200 iterations on the “amaterasu”.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2092–2119
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TYPE-DRIVEN DATA LAYOUTS FOR IMPROVED VECTORISATION 2113

Figure 10. Scaling of the N-body on the “amaterasu”.

Figure 11. Individual scaling of X-parallel and Y-parallel N-body versions.

Now, we would like to investigate how the implementations are going to behave in the presence
of multithreading. First, we are going to run the experiment on the Intel-based CPU with four hyper-
threaded cores. We do not have Intel compiler installed as well as ‘perf’ software on this machine,
so we are going to start with single-core runtime relationships, which you can find on Figure 9.

As you can see, we have a similar relations as in Figure 8; however, the difference between X-
parallel and Y-parallel is higher: 4.5 on the laptop and 6.5 here. The reason is not obvious; it could
be either newer instruction set or newer compiler or faster memory or a combination of those.

To observe the effects of multi-core presence, we are running three series of experiments; increas-
ing the size of the input data to observe if larger memory footprints influences the performance. The
results are presented in Figure 10.

As we can see, the scaling across all the three figures is similar. The difference between X-parallel
and Y-parallel decreases when the structure does not fit in the cache, but then it increases again in
case of 6000 planets. From the graphs, it might seem that the Y-parallel scales worsen; in case of
larger amount of cores, the runtimes of the X-parallel and Y-parallel can merge. That is not actually
true; it is just the scale of the graph. In order to demonstrate that, we are going to look at individual
graphs of the N-body with 6000 planets for X-parallel and Y-parallel versions. The runtimes are
presented at Figure 11.

As you can see, the scaling graphs are very similar; actually, the Y-parallel version scales better.
Both benchmarks have a ‘jump’ after four threads, which happens as there are only four physical
cores, which means that in case of five and more threads two threads will share one cache.

Finally, we are measuring the N-body scaling at the example of Intel machine with 12
hyperthreaded cores and see how it scales there. Please find this experiment in Figure 12.

This experiment confirms the scaling claim—having more CPUs does not merge the runtimes
of X-parallel and Y-parallel. The Y-parallel is four times faster than the X-parallel within a single
thread and on 24 threads.

6.1.1. Mandelbrot. As a second example we look at a computation of Mandelbrot sets. The formu-
lation of the Mandelbrot algorithm in SAC-�, assuming that complex numbers are built-in and <a,
b> denotes a complex constant aC bi , can be found in Figure 13 on the left. We assume that depth,
height, width, X1, Y1, DX and DY are compile-time constants.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2092–2119
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2114 A. ŠINKAROVS AND S.-B. SCHOLZ

Figure 12. Scaling of the N-body implementations on the “jove”.

Figure 13. Formulation of the Mandelbrot problem in SAC-� using built-in complex numbers on the lef and
using array-based representation of complex numbers on the right.

Figure 14. Runtime relations for the Mandelbrot 2048 � 2048 floats with depth=4096 on the “laptop”.

No matter if complex numbers are built-in or not, at some point, they are going to be represented
as two-element structures; scalar operations on complex numbers will be expressed via normal
scalar operations. We demonstrate this in Figure 13 on the right.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2092–2119
DOI: 10.1002/cpe
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TYPE-DRIVEN DATA LAYOUTS FOR IMPROVED VECTORISATION 2115

As in the case of the N-body, we are going to start with sequential runtime and instruction count
relations obtained on the ‘laptop’. Please find it in Figure 14. The names of the benchmarks on
Figure 14 mean the following:

Reference is a literal translation of the high-level formulation found on the left hand side of
Figure 13 in C using float-based complex numbers.

No-complex is a literal translation of the high-level formulation found on the right hand side of
Figure 13 in C using floats. We also get avoid square root computation by translatingq
´20 C ´

2
1 < 2 into ´20 C ´

2
1 < 4.

Vectorised is a vectorisation of the No-complex function using .4;4;4/ ! 4 layout type
for the function iter, which means that we compute V iterations simultaneously.
The function itself is quite simple; however, the required code transformation are
non-trivial—it requires creating data-flow masks with further predication, and it all
happens in the recursive context. The transformed code will look like this:

# (float[V], float[2,V], float[2,V]) -> float[V]

iter (Ei, É, Ea) =
let

Em = (Ei < Ed) and (É * EŃ < E4);
in

if Em == Efalse then
Ei;

else
let

Et1 = iter (Ei C E1, É * É + Ea, Ea);
in

select ( Em, Et1, Ei),

where Ex corresponds to the variable x with its shape being replicated V times; É
* EŃ corresponds to vectorised version of ´20 C ´

2
1; boolean operations are computed

component-wise; multiplication and addition are overloaded for complex numbers and
select(m,a,b) corresponds to if m[i] then a[i] else b[i] applied
to all V vector components.

As we can see, we have a similar to N-body situation with respect to runtime and instruction
relations—vectorised version runs much faster and has significantly less instructions. Please note
that here we have measured instruction counts in the overall program; it does include I/O operations,
but their contribution to the overall instruction count is negligible. As for the Reference version, we
can see that GCC compiler can bring it down to No-complex at -Ofast, where ICC fails to do so. We
do exclude this version from the further measurements.

The scaling runtimes on the ‘amaterasu’ can be found in Figure 15. Please note that we are using
default dynamic scheduler in OpenMP, as computations are non-uniform over the grid.

As we can see, the scaling is much smoother than in the case of the N-body, and we do not have
a ‘jump’ after four threads. That is because the Mandelbrot problem is clearly more compute-bound
than memory bound.

Finally, we present scaling figures on ‘jove’ to ensure that adding more cores does not make the
runtimes to merge. The results are presented at Figure 16

7. RELATED WORK

The idea to modify data layouts by means of compiler transformations is not new. There has been
quite some work in the context of optimisations for improved cache behaviour [9, 10] and, more
recently, for improved streaming through GPUs [11, 12]. In that work, improvements of spatial
and temporal locality are the key goals. While this may seem to be a goal very similar to what we

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2092–2119
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2116 A. ŠINKAROVS AND S.-B. SCHOLZ

Figure 15. Scaling for the Mandelbrot implementations with 2048 � 2048 floats and depth=4096 on the
“amaterasu”.

Figure 16. Scaling for the Mandelbrot implementations with 2048 � 2048 floats and depth D 4096 on the
“jove”.

propose here, spatial locality is not sufficient for an efficient vectorisation, as we experienced at the
example of a N-body—vectorisation across the inner dimension has better spatial locality than the
variant we have inferred.

A lot of related work is based on polyherda model, so we will start with a couple of comments
about it. In principle, the work that we describe in this paper can be formulated in terms of polyhedra.
Our maps and reduces have similarities to the loop-nests and by trying to vectorise every loop in
a loop nest using ‘direct outer loop vectorisation’ technique from [13] with further checks if the
vectorisation succeeded we can generate layout types for the arrays referenced in this loop nest.
Generated constraints have to be resolved and polyhedra model would not help here. After that,
the code have to be transformed that can be solved by the polyhedra. The main weakness of this
technique in our set-up is the lack of support for function applications inside loop nests; obviously,
not all the functions can be inlined. That would have a serious impact when it comes to inferring the
layout types for the overall program. Second, we plan to use this work as a basis for more complex
vectorisations like grid and stencil computations by introducing new kinds of layout types, in which
case, we believe that pure functional setup would allow more aggressive optimisations.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2092–2119
DOI: 10.1002/cpe
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Now, we would like to pay attention to the individual works. G. Chen et al. in [14] describe a
similar approach. They as well propose to infer data layouts of the arrays in the whole program.
The main focus of their work is to formulate potential layouts for arrays as a constraint network and
solve it. The layouts are defined as vectors in an N -dimensional space. The work is more on the
theoretical side of things, and the application is not described. There is no discussion about selection
of the layout-setting for the whole program assuming that constraint resolution returned a number
of alternatives.

U. Bondhungula et al. in [15] present a polyhedra model based transformation for tiling loop
nests for further parallelisation by means of OpenMP. The polyhedral framework described in their
paper is able to handle sophisticated loop nests; however, the transformation changes only the order
of the iterations that might not be sufficient for efficient vectorisation. Transition from the inferred
iteration order to the new layout is non-trivial, as the layouts have to match for the variables that are
being reused.

K. Trifunovic et al. in [16] present a polyhedra based transformation for automatic vectorisation.
Similar to [15], this work assumes that layouts are fixed, and the transformation is substituting
identical arithmetic operations with vector ones.

T. Hanretty et al. in [17] present a framework to optimise alignment conflicts caused by sten-
cil computations. The key idea of the transformation is very similar to what we do—interchanging
dimensions with further transposition. The main difference of the approaches is that in our work we
are concerned by the overall program performance, as layout transformations for the sake of opti-
misation of a certain operation may have a negative effect on the overall performance. So we are
concerned with generating all the potential program vectorisations and choosing the best perform-
ing. On the other hand, the transformation described in [17] would not currently be applicable in
our setup as it uses operations in selection functions that are not allowed. However, by applying a
preprocessing step on the stencil-like computations, we can express it in the acceptable form for our
inference system.

Roland Leißa et al. in [18] demonstrate a language that is an extension of C, which allows to
annotate data types that later are used by the type inference to infer and propagate vector opera-
tions using scalar code. The main use-case demonstrated in the paper is very similar to the N-body
case where vectors of triplets are being vectorised over the individual component axis rather than
over the whole structure. The main difference of the approaches is that we concentrate on an auto-
matic inference of the layout without providing any annotations. Another difference is that we use
multidimensional arrays instead of vectors of records.

P. Clauss and B. Meister in [19] present a framework to optimise a data locality of the loop-nest
by rearranging data layouts of arrays. The transformation proposed in the paper, for a given loop-
nest generates new indexing functions for the dependent arrays such that iterations would access
arrays sequentially in terms of the loop nest. It looks like an ideal solution from the theoretical point
of view; however, it is not clear how to solve the same problem for multiple loop-nests.

M. Kandemir and I. Kadayif in [10] propose to change memory layouts dynamically to achieve
better locality in loop nests. This is an interesting approach that can be considered as a next step
for our framework, as currently we explicitly avoid layout changes of any array at runtime. On the
other hand, one can easily construct a situation where two expressions require one and the same
array to be have contradicting layouts. The main idea the technique proposes is to estimate while
execution if changing a layout improves the cost of the loop-nest we are about to execute, and if it
does perform a dynamic adjustment. In our case, we would have to adjust the cost function, as we
are not concerned with locality, we are rather concerned with a runtime, which is a bit harder to
estimate. Also, the approach assumes that a program is a series of loop-nests joined by control-flow,
which is not directly applicable in our setup.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we advocate a novel systematic approach towards data layout transformation that
enables vectorisation. This approach is motivated by the observation that many scientific codes have

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:2092–2119
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2118 A. ŠINKAROVS AND S.-B. SCHOLZ

vectorisation potential that cannot be utilised because of an algorithm driven choice of data-layouts
that is at odds with an effective vectorisation. The paper presents one such example, namely, the
naive N-body code and discusses why the straight-forward formulation leads to an unfavourable
data layout.

Building on the N-body example, the paper develops our approach towards a systematic inference
of layout transformations. By means of a type system, we abstract from all program detail that is
not relevant for a choice of data layouts. Using this abstraction facilitates not only the inference of
layouts themselves it also guarantees the consistency of all inferred layouts.

We describe the type system as well as an inference algorithm in detail; we show how this
identifies a few possible layout variations for our running example, the N-body code.

The paper also provides some initial performance figures. Manually modified codes that reflect
the inferred layout transformations show that substantial runtime improvements close to the vector-
width of the architecture used are achieved over competitive C implementations of the N-body and
Mandelbrot problems. They also show that these improvements are orthogonal to non-vector-based
parallelisations that stem from the use of multi-core CPUs and that effects of our techniques can be
achieved on low-profile and high-end architectures.

The orthogonality between vectorisation and multi-threaded parallel execution renders this work
particularly powerful in the context of code generation for high-performance executions. The com-
plexity of the program transformations that might be necessary to achieve the inferred layouts
suggests that the full potential of this approach would be ideally realised through a fully automated,
compiler driven process.

This vision guides our future work. We have implemented the layout inference in SAC, and we
are working on code generation; specifically, we would like to make sure that we can at least match
performance of the hand-written code presented in the evaluation section. Second, a cost model
similar to that of existing auto-vectorisers should be used to decide which legal layout variant to
choose for a given target platform.

Further, we intend to use this platform as a basis for more complicated vectorisation patterns. For
example, the stencil-like computations are not properly supported, that is, if we have an expression
similar as follows:

map i < N
a[i-1] + a[i] + a[i+1].

Our system can vectorise it, but the update is not going to be in-place. Currently, there is an opti-
misation in SAC that converts such a code into in-place update; but then for efficient vectorisation,
we would have to merge this techniques with new array layouts described in [17], infer boundary
conditions and fit it together in the compiler.

Another area of research is to allow for dynamic layout transformation, as currently, it is easy to
construct an example where none of the data layouts would be changed, as two or more expressions
have contradicting requirements. One could consider adjusting layout on the fly but, in that case,
has to make sure that this transformation is not harmful.

Finally, cost of the vectorised functions can be arbitrary hard or even impossible to compare
as they might depend on the statically unknown parameters. With that respect, we may apply a
symbolic evaluation for the comparison; however, it does not cover all the cases. One might con-
sider asking a programmer to provide annotations for a certain variables. In that case, we can
apply interval analysis techniques, or the annotations could be in some different form with a
clear algebra.
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